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Abstract

CommunityFinder is software to analyze the communities that develop in massively online open courses
(MOOCs). The goal of the tool is to give researchers and teachers further insight into their classes. The
software organizes a corpus of forum posts into an Interaction Graph that represents how students interact
with each other. From this graph, the software can perform community detection using two different algo-
rithms. Along with the source code, we also release the results of running CommunityFinder on two different
edX courses.

1 Introduction

Massively online open courses, or MOOCs, are offered by universities across the country, including MIT.
Over 100 classes are offered on platforms like edX and Coursera and this number is growing. Due to the
nature of being online and open, a lot of data is being collected about how students interact with the course
material.

The discussion forums in these classes are the primary way that students and teachers interact in these
online courses. For example, the first offering of 6.002x (Circuits and Electronics) in Spring 2012 had over
90,000 posts made.

In this paper, we present CommunityFinder, which is software that extracts structured representation of
how student interact with MOOCs and then performs community analysis on this structured representation.
The software outputs information on several aspects of the community structure in an online course.

2 Motivation

Understanding the community structure of a graph can bring improved understanding of complex systems.
MOOCs provide a new complexity to education in not only the size of their enrollment, but also in the
different way that they teach material. If we understand qualitatively how students interact with each other
and instructors in a course, we will be able to better understand how successes and failures of MOOCs. This
understanding will allow educators to improve these online course moving forward.

3 Previous Work

The problem of identifying communities is very hard and not yet satisfactorily solved. The dependency on
domain makes it difficult to generate general purpose algorithms. Further, some domains such as social
network data require not only accurate, but efficient algorithms to process large amounts of data. However,
there is a large interdisciplinary effort to solve it because of the number of applications.

The community structure in a network of interactions represented as a graph where entities are vertices
and interactions are edges is a clustering of a graph such that vertices in a cluster have more edges to vertices
in the same cluster and fewer edges to vertices in other clusters [3]. How we interpret the clusters that form
is often dependent on the domain of the problem, but they often are interpreted as vertices playing a similar
role. For example, given an network of how scientific researchers have collaborated with each other, we would
expect to find that communities correspond to the different scientific disciplines.



In the domain of online education, we might want to identify the students that take various roles in a
class. Huang et al. [5] focused on the most focal subset of contributors on MOOC forum that they label
as superposters. They suggest the superposters can be models for the ideal student because they often
make high quality posts. Their study seeks to examines contribution patterns, demographics, and course
performance and enrollment of these superposters. The researchers conclude that these posters make high-
value contributions and also encourage further student engagement.

Other researchers analyzed post content from business strategy class on Coursera [4]. This meant consid-
ering over 15,600 posts. They looked at 5 aspects a student’s postings and then used Bayesian Non-negative
Matrix Factorization to extract communities. They looked specifically at two sub-forums and identified
communities such as committed crowd engagers, discussion initiators, strategists, and individuals.

4 Student Relationships in Discussion Forums

Students interact in the discussion fo-
rums. Because of this, we can infer inter-
student relationships based on a corpus
of forum posts.

The discussion forms we consider in
this paper are organized as a collections
of threads. Within a thread, students 7 manths oo
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the conversations to determine student
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has a parent post that it is associated
with. The parent/child relationship is in-
terpreted as the child post being a reply
to the parent. We use this interpretation
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Figure 1: An example thread from 6.002x Spring 2014, which is
currently being offered.
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dents who post on the forum are related,
we present the idea of an Interaction
Graph.

4.1 Interaction Graph

Figure 2: This is a visualization of the Interaction Graph for 6.002x Fall 2012. This graph has 2163 students
who made 6902 posts.

In an Interaction Graph, each vertex represents a student in the class. For two students ¢ and j, the
graph has a directed edge from i to j if ¢ has made a comment in direct reply to j. The edge between i and
j is weighted by the number of times that ¢ directly replied to j across all threads in the forum. We use
this directed and weighted model to preserve as much information as possible about the the original forum
interactions. Only students who are involved in a thread with at least one reply are considered. Figure 2
shows what the graph of student interactions looks like for 6.002x offered in Fall 2012.



5 Community Detection

We considered two different approaches to identifying communities: spectral clustering and Louvain Method.

1400

1200

1000

600

200

00 o 200 a0 500 500 000 200 Ta00 600

2500

2000

1500

1000

oo o 500 000 500 2000 2500 3000

Figure 3: Visualization of the results of the highest modularity partitioning of 6.002x Fall 2012. On the top
is the the best Louvain Method partition. On the bottom is the best spectral clustering partition.



5.1 Spectral Clustering

Spectral clustering is a group of techniques that transforms the initial set of verticies in space by using
eigenvectors. After this transformation, the points are clustered using a standard algorithm [3]. Spectral
clustering can be broken down into 3 parts

Affinity Matrix The algorithm uses an affinity matrix that describes the similarity between two vertices.
In our case, the affinity matrix is exactly an instance of the Interaction Graph. This works because
the ij entry of an Interaction Graph encodes how the strength of the relationship between i and j.

Dimension Reduction The algorithm uses the spectrum of the graph Laplacian to reduce the dimension
of the matrix. The Laplacian, L, of the graph is defined as

L=D-A (1)

where D is a diagonal matrix with d;; = deg[i] and A is the adjacency matrix. In our implementation?,
we use the normalized graph Laplacian which is defined as

L'=D LD : (2)

This is preferred to the unnormalized Laplacian because it performs better under general conditions [8].
Using the eigenvectors of the normalized Laplacian, each vertex is transformed into a lower dimension
space where the coordinates are elements of the eigenvectors. This reduction is important because it
makes the important features of the initial matrix more prominent before applying clustering. Thus,
this method allows clusters to be identified that would not have been identified by standard clustering
techniques. For example, spectral clustering tends to transform the initial into points into a convex
sets of points, which are easier to cluster [3].

Clustering The algorithm uses a discrete method proposed by Yu and Shi to do clustering in the lower
dimension space. This method was chosen over KMeans for clustering because it is often faster and more
robust to random initialization than KMeans [9]. The clustering is found by iteratively searching for a
discrete partition closest to the eigenvector embedding. This done by first normalizing the eigenvector
embedding to the space of the partition matrix. Next, a we fix an optimal discrete partition matrix
and then calculate the optimal rotation matrix. These to steps are performed until convergence. The
discrete partition matrix is returned as the solution to the clustering problem.

5.2 Louvain Method

The Louvain method is a greedy optimization method for determining communities in large networks [2]. It
seeks to optimize the modularity of a partition of the network. Given a partition of the graph, the modularity
measures the relative frequency of links inside communities as compared to links between communities. It
is scalar value between -1 and 1 and is calculated as follows

Q=53 45 - 2 ey 3)
ik

Mn this paper, we use an implementation of spectral clustering and discrete clustering provided by scikit-learn [6].



where A;; is the weight of the edge between i and j, k; = > j A;j, ¢; is the community that 7 is assigned
to, the d(u,v) is 1 if w = v and 0 otherwise, and m = %Zij Ajj.

Exact modularity optimization is NP-hard [2]. The algorithm starts by assigning a unique community to
each node and then iteratively performing two steps until maximum modularity is achieved. First, the method
looks at every node i and its each of its neighbors j. Node i is removed from its community and added to the
community of j where the gain in modularity is highest. If the modularity cannot be improved by moving i,
then the community assignment will not change. This is repeated until no more changes in community can
be performed to increase modularity. The second step is to build a new network where the nodes are the
communities discovered in the first step. Edges between nodes in the same community are self loops in the
is new graph. These steps are repeated iteratively until no more changes occur during an iteration, which
means a maximum of modularity has been reached. This produces a hierarchy of communities. This method
has been observed to be very fast and appears to run in O(nlogn) [2], where n is the number of nodes in the
network?.

6 CommunityFinder Software

6.1 Overview

CommunityFinder identifies the community structure in a set of forum posts. It does this by infering the
strength of a pair of students’ relationship based on how often they make posts to each other. After this
structure is determined for all students, CommunityFinder offers two methods of inferring the community
structure implied by student interactions.

6.2 Data Sources

In order to extract an Interaction Graph for analysis, CommunityFinder can query from multiple data
sources. Currently, it supports a MySQL database in the MOOCdb [7] format, a Mongo database dump as
provied from edX, and an edge list formatted as a file of comma separated values. We recommend using
MOOCdD as it is a standardized schema for representing MOOC data.

6.3 Design Decisions

CommunityFinder is built with flexibility in mind. It is not meant to be tied to an specific MOOC platform.
To this end, it is has support for querying directly from any course data that is in the standardized MOOCDB
schema. This is the recommended way to use the software.

However, it is easy to extend the software to support other data sources. Included in the initial release
is support for extracting graph structure from the Mongo database dumps that the edX platform creates.

Even more, the software supports users who provide their own dataset. An edge list represented as a
CSV can be used for analysis by this software. This means that it is possible to use CommunityFinder to
find community structure in any graph.

The software organizes the Interaction Graph into a hierarchy of higher level features as shown in Figure
5. Students are the lowest level. Students are defined by an individual who post on the forum. Student are

2In this paper, we use an implementation for directed graphs for the NetworkX library [1].
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Figure 4: CommunityFinder performs analysis on an edge list and output three files that describe the
community structure discovered by the graph

grouped together to forum communities. A community is a collection of students and has connections to
other communities. This hierarchy has a few important implications

e It is how the data is structured to be exported from the software. This tool is not meant to do analysis
beyond community identification. Thus, it is important that the software exports all relevent features
about the community structure of the graph that later stages of analysis might use. On the practical
side, this structure enabling the programming of additional features for each of the levels.

e It gives a good building block for extending functionality. As I discuss the Future Work section, we
might want add higher level abstractions such as how the communities develop over time in a class. In
order to do this, we simply can create a higher level abstraction that relates several community graph
objects.

6.4 Adding Functionality

Each file that the program outputs is the enumeration of instances of a particular part of the hierarchy in
Figure 5. Right now, these are CommunityGraph, Community, and Student. This means that Communi-
tyFinder outputs a file of comma separated values for each instance at each level. The values that are output
depend on the list of properties at the top of each class definition. To add another property, simply add a
string to this list. The proprieties can involve additional computation by using python decorators to label
certain methods as properties.
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Figure 5: This represents how the CommnityFinder software understands the structure of the interaction
graph. The hierarchical structure was chosen to enable flexibility as the software is developed.

7 Results

The Louvain Method has the advantage of not requiring that that number of communities be explicitly set
when running the algorithm. For spectral clustering, we simply try all possible values for the number of
communities between 1 and the half the total students in the class and present the partition of the highest
modularity.

Using CommunityFinder, we extracted the Interaction Graph from two past edX offerings of the course
6.002x. We note that CommunityFinder only counts students that had an interaction with at least 1 other
student. The results of running CommunityFinder are presented in Table 1.

Course 6.002x 6.002x 6.002x 6.002x 6.002x
Offering Spring 2012  Fall 2012 Fall 2012 Spring 2012 Spring 2013
Method Louvain Louvain  Spectral Louvain Spectral
Number of Students 8816 2163 2163 710 710
Number of Edges 52362 5641 5641 1564 1564
Number of Posts 71440 6902 6902 1914 1914
Number of Communities 37 7 114 32 72
Average Community Size 238.3 19.0 221 20.3 9.9
Largest Community 1438 204 413 87 76
Modularity .360 .510 442 .039 .502

Table 1: Summary of results of running CommunityFinder 3 edX offerings of 6.002x. We do not present the
results of 6.002x Spring 2012 using the spectral clustering because CommunityFinder ran out of memory
during the testing for that course.

The running time of these community detection algorithms is also an important consideration if we want
to be able to analyze a large number of classes. Table 2 shows the running time for 6.002x Fall 2012.

Unlike Louvain Method, spectral clustering requires the number of communities in order to produce a
result. The result we present in Table 1 show the number of clusters that achieves the highest modularity.



Method Louvain

Spectral 10 communities Spectral 50 communities

Spectral 100 communities

Running Time .792 sec

3.300 sec 5.068 sec

6.630 sec

Table 2: The total running times for CommunityFinder under different parameters.
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Figure 6: Number of Communities vs Modularity. 6.002x Fall 2012 is on top and 6.002x Spring 2013 is on

bottom

Figure 6 shows how the number of communities specified affects the modularity of interaction graph for

6.002x Fall 2012.



8 Discussion

The initial results show the Louvain Method obtains a higher modularity than spectral clustering in two
offerings of 6.002x. In the third offering, only the Louvain Method produced results. The Louvain Method
also achieves this maximum modularity with a lower number of of communities when compared to spectral
clustering.

Spectral clustering requires the number of communities to be specified. In order to optimize modularity,
CommunityFinder does a brute force search over the number of communities. Figure 6 shows how the mod-
ularity varies as we vary the number of communities. We can see that increasing the number of communities
increase modularity up to a certain point. After that, further increases in number of communities decreases
the modularity.

The other important consideration is performance. The Louvain Method vary clearly outperforms spectral
clustering on our dataset. The running time of Louvain method for 6.002x Fall 2012 is nearly 10x faster than
using spectral clustering to determine 100 communities on equivalent Interaction Graph. The advantage
becomes clearer when we determine the optimal number of communities in spectral clustering because we
must actually run the the algorithm multiple times. For example, in our testing, we tested nearly 700
different values for the number of communities in 6.002x Fall 2012. This further amplifies the performance
advantage of the Louvain Method.

Overall, these two results suggest that the Louvian Method is better for community detection under the
goal of modularity optimization. If we consider another metric the results may change. Additionally, we
only ran this analysis on three datasets, all from offerings the same course. We may see different results for
other courses, especially ones in disciplines other than computer science.

9 Contributions

e Described how to transform a corpus of forum posts into an Interaction Graph
e Examined 2 methods for community detection on an Interaction Graph and presented intital results

e Implemented software to extract Interaction Graph from various representation of the raw data and
run community analysis.

10 Future Work

CommunityFinder is first and foremost a tool to do community analysis. As such, it is meant to be used
to do further research on MOOCs. The functionality should grow to accommodate the needs of the people
using the tool. Thus, it will be important to see how people use CommunityFinder.

The are a few good ideas already for future features. For instance, CommunityFinder could implement
other community detection algorithms. There has been a lot of work on other algorithm that have not been
tested. Some of the most interesting are the ones that do not limit a student to being in only one community.
Developing support overlapping communities is a one possible future feature. A second feature is one that
tracks how community structure changes over time. Researchers might want to know how a community
morphs week to week in order to assess how effectively course material is being taught.

Finally, an interesting project would be to use CommunityFinder to relate superposters (as identified by
Huang et al.) to their community assignment.
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Base Class for Data Source

class MoocData ():
def get_edges ():
raise NotImplementedError

def anon._rows(self , rows):

”NN

rows ——> rows of edges list

NN

mapping = {} #real id to "fake” id
new_rows = []
for r in rows:

if r[0] not in mapping:

mapping [r [0]] = random.randint (0,1000000)
if r[1] not in mapping:

mapping[r[1]] = random.randint (0,1000000)
new_row = ( mapping[r[0]], mapping[r[1]], r[2] )

new._rows.append (new_row)
return new_rows, mapping

def export_edges(self , f):
rows = self.get_edges()
rows, mapping = self.anon_rows(rows)
with open(f+”’ _mapping”, ’w’) as out:
out.write (json .dumps(mapping))
with open(f+” _edges”, ’
for r in rows:

out.write( 7%d,%d,%d\n” % (r[0], r[1], r[2]) )

w’) as out:
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Class for Mock Data Source

class MockMOOC(MoocData ) :

999

Mock datasource. Takes a file name. look at mock_data.csv for example

99999

def __init__(self, f):
self . f = f

def get_edges(self):
edges = []
with open(self.f, ”r”) as edges:
edges = [e.split(”,”) for e in edges]
return [(int(e[0]), int(e[l]), int(e[2])) for e in edges]

13



Class for MOOCdb Data Source

class MySQLMOOC(MoocData ) :
def __init__(self, db=None, mock=True):
mysql = db
self.cur = mysql.cursor ()

def get_edges(self, start_.date='2012—03-04 16:57:49’, end_date=’2012—03—06 16:57:49’):

999

query =
SELECT child .user_id , parent.user_id , count(x)

FROM moocdb. collaborations child

JOIN moocdb. collaborations parent

ON parent.collaboration_id=child. collaboration_parent_id
WHERE child . collaboration_timestamp BEITWEEN %s and %s
GROUP BY child.user_id, parent.user_id;

N NN

self.cur.execute (query, (start_date, end_date))
rows = self.cur.fetchall ()

return rows

14



Class for MongoDB Data Source

class MongoMOOC(MoocData ) :
command to load dump
’/mongodb/bin /mongoimport.exe —db %s —collection %s ——jsonArray < "%s”’ % (db, colle
def __init__(self, db):
self .db = db
def get_edges(self , start_date=2012—03—-04 16:57:49°, end_date=’2012—03—06 16:57:49):
graph = self.db.collaborations.aggregate (|

{
"$match’ : {
"parent_ids’ : {
"$not’ : { ’$size’ : 0 }
¥
}
I
{
"$unwind’ : " $parent_ids”
%
{
"$group’ : {
’_id ’:” $author_id”
"neighbors’ : {
"$push’: ”"$parent_ids”
¥
}
)
result = []

for node in graph|[’result’]:
neighbors = db.collaborations.aggregate (]

{
"$match’ : {
7id” o |
"$in’ : node[ 'neighbors’]
}
}
}
{
"$group’ : {
7 _id” : 7" $author_id”,
"weight” : {
"$sum’ ;1

15



1)

for neighbor in neighbors[”result”]:
edge = (int(node[”_id”]), int(neighbor[’_id’]), neighbor[’weight’])
result .append (edge)

return result
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