
ColorCrack: Identifying Cracks in Glass

James Max Kanter
Massachusetts Institute of Technology

77 Massachusetts Ave
Cambridge, MA 02139

kanter@mit.edu

Figure 1: ColorCrack automatically identifies cracks in arbitrary angled photos of cracked screens. It does this in four
main steps : (1) detect screen using HOG features (2) Transform screen by applying homophony (3) Find cracks using edge
detector (4) Process result to connect cracks and color regions.

Abstract

Automatically identifying cracks in glass is an applica-
tion of machine vision that has not been studied much be-
fore. It poses the unique opportunity to incorporate the
physics of glass and how it cracks into a detection algo-
rithm.

ColorCrack is an automated method of finding cracks in
glass smartphone screens using insights from previous work
in object and edge detection.The key to ColorCrack is the
ability to automatically detect cracked screens from nearly
any angle. This functionality allows the system to take ad-
vantage of the fact that cracks are more visible at certain
angles to improve the detection accuracy.

The algorithm was developed and evaluated using a per-
sonally collected dataset. Initial results show that Color-
Crack can typically find the screen correctly or with little er-
ror, as well as identify the main crack structures, efficiently
enough for most applications.

In the future, the ColorCrack algorithm could be ex-
tended to other glass types for applications and has uses
in fields such as material and forensic science.

1. Introduction

Machine vision is a powerful tool to automate a tasks
currently performed by humans. However, what is instinc-
tive for humans is not necessarily for a computer. One such
task is identifying cracks in glass.

Objects that have glass and have the potential to be
cracked are all around us. While it is simple to see cracks, it
is harder to quantitatively characterize the cracks that form
in glass.

Studying how glass break is especially relevant to sci-
entists and engineers who study, design, and develop glass
objects. For instance, in forensic science,researchers seeks
to model how cracks form. In studies like ”Star-Shaped
Crack Pattern of Broken Windows”, researchers analyse
photographs of cracks by hand to develop physical mod-
els that infer the point of origin of a projectile[6]. In other
fields like material science, scientists could benefit from
large digitalized datasets on cracked glass. For example,
imagine if the engineering team designing the screen on the
next iPhone incorporated real world data on cracks in their
design.

The problem poses challenges for machine vision in at
least a few regards. First, the 3d nature of cracks means
that they cannot be viewed from all angles. Second, the re-

1



flective and transparent nature of glass differentiates it from
a lot of other work in vision. And finally, glass is used in
varying manners the differ in both shape and scale which
present difficulties for general solutions.

In this paper, I investigate two approaches to solving this
problem and present the results.

2. Previous work

While I found no previous academic work specifically
on automatic crack detection in glass, the problem relates
to several efforts in the fields of object detection and edge
detection.

2.1. Object Detection and HOG Features

A Histogram of Oriented Gradients (HOG) is a robust
method for generating image features that has been shown
to work well for object detection [2]. It is based on the idea
that an image can be characterized well by the distribution
of local intensity gradients or edge directions.

HOG is calculated for a given image by dividing it into
small regions called cells that can be either rectangular or
radial. Each of these cells is represented as a histogram of
gradient directions of the pixels in that cell. In their paper,
Dalal and Triggs show that overlapping these cells can im-
prove performance[2].

To account for illumination and shadowing in a cell, the
local regions are contrast normalized before using the HOG
features. A common way to do this is to assemble nearby
cells into ”blocks” and then use the total energy of the block
to normalize each cell.

HOG features are then used to train a machine learning
model. A common approach is to train a support vector
machine (SVM), which is a binary classifier that tries to
optimizes a hyperplane between training points. Dalal and
Triggs used this approach to get near perfect separation on
the MIT pedestrian database[2].

2.2. Edge detection

Cracks in glass can be thought of edges in an image.
Edge detection is at core of many machine vision tasks
and has a lot of research behind. Early work by John
Canny has been shown to sufficient for most edge detec-
tion tasks[4]. The Canny detector is based on the gradient
of image pixel intensities calculated using the derivative of
a Gaussian filter[1]. First, the algorithm smooths the image
using a Gaussian filter to reduce noise. In the nonmaxium
suppression step, the algorithms takes the gradient in mul-
tiple directions and scans the image to only keep pixels that
are local maximum in some direction. Finally, the Canny
detector uses a high threshold, T1, and low threshold T2, to
classify pixels. Pixels above T1 are considered strong edges,
while pixels below T2 are labelled as non-edges. Any pixel

that is in between T1 and T2 is classified as an weak edge if
it connects to a pixel above the high threshold.

While many methods since the Canny detector have used
a gradient approach, there are other techniques to solve the
problem using machine learning. Dollár and Zitnick use
the fact that edges contain structures in the form of straight
lines and T-junctions to train a random forest [3]. A random
forest is an ensemble of decisions trees where a decision
ft(x) classifies an image patch x ∈ X using a binary split
function

h(x, θj) ∈ 0, 1 (1)

These trees are combined using an ensemble method such
as majority voting to classify the sample. Dollár and Zitnick
apply this to images by predicting a 16 x 16 segmentation
mask from a larger 32 x 32 input patch. To improve results
they run this prediction at 3 different resolutions of the im-
age and average the result. Finally, they sharpen the image
by iteratively resigning pixels in the segmentation mask and
averaging the results. The technique computes results an or-
der magnitude faster than other methods while also achiev-
ing state of the art accuracy. This results in frame rates that
are high enough for of real-time edge detection.

3. Crack Detection Problem Set-up
For this project, I focus on cracked smart screens be-

cause that is a dataset I could easily generate myself. How-
ever, through the process, ColorCrack was designed with
thoughts towards the general case.

The problem of identifying cracks in glass in pho-
tographs can be broken down into two parts.

1. Finding the glass in a photograph

2. Finding the clacks in the glass

In the first step, the input is a photo of a non-occluded
screen that can be at any angle. The algorithm used in this
step needs to identify the location of the screen and trans-
form the photo so the plane of the screen is perpendicular to
the camera.

In the second step, the input is the corrected screen and
it must output a binary image with the locations of cracks.
Therefore, ColorCrack considers a pixel of glass to either
be cracked or not cracked and nothing in between.

4. Step 1: Screen Extractions from images
The first stage of the problem is extracting the screen

from an angled photograph of a phone. ColorCrack does not
limit the input images to being taken in a certain way to keep
the system flexible. Additionally, most cracks photograph
better when taken at an angle. This means that allowing
angled photos often produces better results.

2



To extract the screen from an angled image, I explored
ways to identify the 4 corners in the image. Once the four
corners are identified, then ColorCrack calculates the ho-
mography that transforms the input image to one where the
plane of screen is perpendicular to the camera.

I experimented with two different approaches for screen
extraction.

Detecting checkerboard pattern on screen
One way to detect the screen is to display a known image
that is easy to detect. Therefore, the first approach I took
was to display a checkerboard pattern on the screen before
taking the photo.

The disadvantage of this approach is that it requires
downloading a specific image to the phone before pho-
tographing it. Even more, this method may be impractical
when extended to other glass scenarios where printing large
checkerboards won’t work. Even though this approach ul-
timately did not work, it was important for providing ev-
idence that it is possible to capture the crack information
even after applying an homography.

Matlab provides the function
dectectCheckerboard that can find a checker-
board in a photo. This function does not return the full
checkerboard, but from the information it does return
ColorCrack computes the average square size. Using the
average square size, the system extrapolates the location
of the corners of the actual screen. Once these corners are
identified ColorCrack calculates the homography and uses
imtransform to get the warped image. The results of
extracting the checkerboard pattern can be seen in Figure 2.

Figure 2: Left: The result of extracting screen using a
checkboard pattern displayed an crack phone. Right: The
result of trying to remove the checkboard pattern from the
image. This approach did not work as well as hoped, so in
the end ColorCrack used a different method.

The final step to prepare the image for crack detection

is removing the checkerboard pattern. While the system
knew the source checkerboard pattern that was displayed
on the screen, the colors are slightly differently in the ac-
tual photo. To account for this, ColorCrack measures the
the color of the squares in the captured photo and adjusts
the source checkerboard photo. With the modified source
checkerboard, ColorCrack subtracts that photo from the ac-
tual photo and takes the absolute value of the result.

The result of this can be seen in Figure 2. As you can
see, this preserved the cracks, but left artifacts where the
cells change color or the checkerboard was misaligned.
While it may be possible to remove these artifacts, I
perceived it as too difficult and took another approach
to identifying the screen without having to use a specific
image.

Screen detection using HOG features
Next, I redefined identifying the screen on a phone as the
task of identifying each of the four corners. ColorCrack
implements this by training a multi-class SVM on the HOG
features of a training set of images.

Making training set

I assembled the training set manually using a custom
tool. The tool displayed a photo and created 100px by
100px patches around the points I clicked. Using this tool I
assembled a training set of 12 examples of each type of cor-
ner and 200 examples of non-screen corner objects. Figure
3 shows what these patches look like for each of the 4 corner
types. In the non-screen corner objects I included examples
of pictures of screens that did not contain corners as well
as examples of corners that were not screens. These two
changes improved performance on at least a few examples
in my data set.

Figure 3: An example of four corner examples extracted
from an image for training.

Before training the 5 one vs all SVM’s on these patches

3



I had to decide on the cell size to use to computer my HOG
features. I determined this by trying several different cell
sizes as show in Figure 4. The visualization shows that a
cell size of 32x32 does not seem to encode enough shape
information. On the other hand, a cell size of 8x8 encodes
more information than is probably necessary. This means
that the dimensionality of the training examples would
be very high, increasing time to train. The cell size of
16x16 seems to be a compromise that limits the size of the
resulting vector while encoding enough information.

Figure 4: Visualization of the HOG features for for 3 differ-
ent cell sizes. ColorCrack uses a cell size of 16x16 to bal-
ance capturing shape information and limiting feature size.
Left to right cell sizes: 8x8, 16x16, 32x32.

Using image gradients for training

In the course of training, I discovered that taking the
gradient of the image before extracting HOG features
improved performance. This might be because the sharp
change in color between glass and the border around the
glass is a defining feature of glass that can be exploited
for better performance. Figure 5 shows the result of this
addition to the the processing pipeline.

Figure 5: The result of using the image gradient to calculate
HOG features. The classification of the upper right corner
becomes noticeably more accurate.

Training SVM’s and Corner Detection

With the features determined, ColorCrack trains several
SVM’s to detect each type of corner – upper left, upper
right, lower right, and lower left – as well as an SVM for
non corner objects. They were training in a one vs all fash-
ion.

To find a corner, ColorCrack uses a sliding window of
100px by 100px that skips 10 pixels at a time to assemble a
list of candidate coordinates. The candidate coordinate that
has the highest score for each corner type gets labelled as
that corner. While the corner detection generally worked
well, it did not always perform as well as necessary for
step 2. In cases like the one in Figure 6, I manually picked
out the corners in order to evaluate the performance of just
crack identification.

Figure 6: An example of when ColorCrack did not properly
identify the location corners. This error may be too much
depending on the application.

5. Step 2: Crack identification
Finding the cracks in the transformed image happens

in 4 steps: convert to grayscale and apply Gaussian blur,
run edge detection, filter out noise, and dilate then erode
edges. The results at each step of of this process are shown
in figure 7. As mentioned above, to access the performance
only of this step, I manually selected corners when step 1
did not not perform well enough.

Convert to grayscale and apply Gaussian blur
This is a preprocessing step. Color data is not used by
ColorCrack to finding cracks, so the input image can be

4



Figure 7: The results of applying ColorCrack’s crack detection algorithm to 4 sample photos. From left to right: input image,
result of applying Gaussian blur and Canny edge detector, result of removing regions that are too small to be cracks, result of
dilation, result of erosion, result of coloring in regions. Small tweaks were made to the parameters of each image to achieve
optimal results.

converted to grayscale. After that, ColorCracks applies
a Gaussian blur to the image. Cracks are very defined
parts of the input image, so blurring the photos preserves
the crack information while removing noise that might be

falsely identified as a crack.

Run edge detection
ColorCrack uses the Canny edge detector to locate cracks.

5



Cracks continue to form until they hit another crack [5].
This creates the branching pattern that the weak and strong
edge threshold the canny detector detects well. Thus, the
Canny edge detector is a good choice because the physics
of how cracks form is similar to the mechanics of the Canny
edge detector.

However, it is important to set the threshold for strong
and weak edges in the Canny edge detector. ColorCrack
modifies the default values of Matlab’s Canny edge detector
implementation based the insight that there will be at least
on crack in the image that is very easy to recognize. This
means that the threshold for strong edges is set higher than
the default.

Filter out noise
After running the edge detector, there are sometimes
”cracks” that are just noise in the image. To filter this
out, ColorCrack uses the observation that cracks are
typically large continuous regions. The Matlab function
bwareaopen is used to remove regions that contain too
few pixels to be cracks.

Dilate edges then erode edges
As mentioned above, cracks form until they hit another
crack. To fulfil this constraint, ColorCrack tries to connect
the cracks the Canny detector finds by dilating the pixels of
the crack using imdilate and a disk structuring element.
After applying the dilation to connect cracks, the Matlab
function imerode with a smaller disk structuring element
is applied to shrink the detected cracks, while leaving the
new connections in tact. As an added benefit, the dilation
and erosion has the effect of filling in the area between the
outsides edges of the crack, which is the desired behavior.

6. Evaluation
ColorCrack was evaluated using 8 different photos of

cracked screens. Below are the highlights of what worked
and thoughts on how to improve what did not work.

What worked
ColorCrack generally correctly found corners or found them
with small errors. This worked on a relatively small dataset
of just 248 images, which speaks to the robustness of HOG
features and SVM’s.

ColorCrack always found the most prominent cracks in
a photo and often found the weaker connecting cracks. This
is likely a result of the fit between the crack identification
problem and the Canny Edge detector. It struggled on the
higher resolution cracks and very weak cracks, but requiring
accuracy in these regards depends on the exact application.

ColorCrack is performant enough to be used on large
sets of data. In a reasonable amount of time (hours), it
could be applied to high speed photography or thousands

of photos. This is largely because of the efficient imple-
mentation of all steps of the process in Matlab.

What did not worked and thoughts on how to improve
When ColorCrack incorrectly identifies the corner locations
it heavily affects the homography calculation. A way to im-
prove this would be to have highly ranked candidate points
”vote” on where the corner should be. Another solution
might be to implement logic that selected the highest rank-
ing four points that fulfilled the constraints of how they
could be arrange (e.g an upper corner cannot be below a
lower corner).

Another issue is that even when taking a photo at an an-
gle, cracks sometime do not show up clearly. In this case, it
is impossible to identify every crack. A possible solution to
this could be to compute image correspondences between
multiple image a different angles and combine the results.

Finally, the next step is to apply ColorCrack to other uses
of glass. In particular, it would be useful to explore how
much tweaking is necessary on a dataset of crack windows.

References
[1] J. Canny. A computational approach to edge detection. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions
on, PAMI-8(6):679–698, Nov 1986.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005.

[3] P. Dollár and C. L. Zitnick. Fast edge detection using struc-
tured forests. CoRR, abs/1406.5549, 2014.

[4] B. Green. Canny edge detection tutorial, 2002.
[5] B. of Criminal Apprehension. Glass, 2014.
[6] N. Vandenberghe, R. Vermorel, and E. Villermaux. Star-

shaped crack pattern of broken windows. Phys. Rev. Lett.,
110:174302, Apr 2013.

6


