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Abstract—In this paper, we introduce "prediction engineer-
ing" as a formal step in the predictive modeling process. We
define a generalizable 3 part framework — Label, Segment,
Featurize (L-S-F) — to address the growing demand for predictive
models. The framework provides abstractions for data scientists
to customize the process to unique prediction problems.

We describe how to apply the L-S-F framework to charac-
teristic problems in 2 domains and demonstrate an implemen-
tation over 5 unique prediction problems defined on a dataset
of crowdfunding projects from DonorsChoose.org. The results
demonstrate how the L-S-F framework complements existing
tools to allow us to rapidly build and evaluate 26 distinct
predictive models. L-S-F enables development of models that
provide value to all parties involved (donors, teachers, and people
running the platform).

I. INTRODUCTION

In recent years, the data science community has expe-
rienced a sharp increase in demand for predictive models
from time-driven relational data. This type of data is collected
during the regular day-to-day use of physical machines (such
as turbines or cars), services (such as ride sharing or an
airline), and digital platforms (such as online learning or retail
websites). This data has specific properties that differentiate
it from images or text. It is event-driven and collected across
different time scales, and contains a multitude of data types,
including categorical, numeric, and textual.

Improving the process of building predictive models for
such data presents immense opportunities for organizations.
Past work has focused on making automated tools for training
optimal machine learning models [1], and on automating
feature engineering [2]. However, we contend that a more com-
plex and human-driven process still remains to be defined and
solved. This process–of defining the outcome user is interested
in predicting, finding past occurrences of this outcome in the
data, and forming learning segments (prior to the outcome)
from which a model could be trained–is still manual, and is
executed on a case-by-case basis.

Most workflows assume that data has already undergone
this process and is ready for feature engineering. At the time of
this writing, KAGGLE, a popular website for crowdsourcing
data science, had just released a challenge in which participants
build a model that can differentiate between interictal EEG
segments (those occurring between seizures) and preictal ones
(those occurring prior to seizure)1. This data was preprocessed

1https://www.kaggle.com/c/melbourne-university-seizure-prediction

to: separate data files of 1 hour segments labeled as preictal and
interictal; make sure preictal segments ended 5 minutes before;
and interictal segments were collected randomly but at least 4
hours away from seizure activity. Such data is immediately
ready for feature engineering and machine learning when
released. Arguably, this is one of the most important value
additions KAGGLE provides.

Currently, practitioners face many common challenges in
preparing training examples for feature engineering and learn-
ing a predictive model, including (1) defining how the outcome
to be predicted is computed and searching through variations
in its definition, (2) setting one or more time points to check
for the presence/absence of the outcome, (3) picking training
examples based on domain-specific criteria (for example, in a
medical application, only one example per patient is allowed),
(4) maintaining gap between them, when multiple examples
are picked from the same entity-instance (5) achieving balance
in classes (for classification problems), (6) optimizing the
parameters of a prediction definition, such as how far ahead
to predict and how much past data to use, (7) deciding on
the timespan of data to use for learning, (8) preventing label
data from leaking into feature extraction, (9) handling time
deltas defined in absolute time or number of samples. Across
different domains, these challenges manifest themselves in
several disparate ways. Thus, there exists no unified framework
to enable data scientists to quickly ingest data, parametrically
set up a prediction problem, and segment the data for feature
engineering.

We formally define “prediction engineering” as the process
that transforms time-driven relational data into feature vectors
and labels that can be used for machine learning. It aims to
abstract away common data preparation tasks prior to feature
engineering, allowing data scientists to focus on the specifics
of the prediction problem at hand. In this paper, we present
the Label, Segment, Featurize (L-S-F) prediction engineering
framework. By formalizing prediction engineering, we not only
enable the rapid iteration of predictive models on a single
dataset, but also unify model building in seemingly disparate
domains.

Our major contributions include:

• A set of abstractions that enable profound flexibility when
defining prediction problems.

• The Label, Segment, Featurize (L-S-F) prediction engi-
neering framework, which systematically prepares rela-
tional data for machine learning.
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Fig. 1. An overview of the L-S-F framework for prediction engineering. In the "label" step, the user supplies a labeling functions function to compute a
prediction label after a cutoff time, tc. In the "segment" step, a learning segment from before tc is identified using parameters such as lead and lag. Finally,
in the "featurize" step, data from the learning segment is transformed into a feature vector that can be used by machine learning algorithms to build predictive
models.

• Demonstration of the efficacy of the L-S-F framework on
5 unique prediction problems defined over a dataset.

The paper is organized as follows: In section II we present
a motivational example, and in section III we present related
work. In Section IV we present the L-S-F framework for
prediction engineering. In section V, we elaborate how the
output of L-S-F interacts with the feature engineering software.
In section VI we apply L-S-F to problems from 2 domains,
and present experimental results for the KDD-2014 dataset. In
section VII we discuss the implications of L-S-F and what we
learned as its first users. Section VIII concludes.

II. MOTIVATIONAL EXAMPLE

Consider a retailer that wants to predict if a given customer
will churn, and to react to that prediction as early as possible.
The retailer has established a specific definition of churn, and
has at their disposal a timestamped data set containing all of
the store’s customer transactions.

To construct training examples for machine learning, the
data scientist must first implement a definition of churn that
identifies customers who can be used as positive and negative

training examples. If we are using a time window for churn –
for example, will this customer churn in the next 6 months?

– then a given customer could be used as either a positive
or negative example, depending on the time point at which
we choose to label them. For each labeled customer, the data
scientist identifies a segment of data prior to the labeling
time point to learn a model. The data scientist performs
feature engineering over this segment of data to avoid leaking
information into the features.

How training examples are labeled depends on the defini-
tion of churn and when the labels are calculated, while feature
extraction depends on how far in advance the data scientist
wants to predict and how much historical data is used. After
building a end-to-end model, altering these parameters should
be easy. For instance, if it is discovered that churn can be
predicted accurately 1 week in advance, it is natural to explore
increasing that amount of time to 1 month. An exciting aspect
of predictive modeling is imagining other "what if" scenarios:

• What if the retailer wants to change how customer churn
is defined from 1 month of inactivity to 3 months?

• What if the retailer wants to predict churn only after the
first purchase by the customer, for operational reasons?

• What if the data scientist wants to use the same pipeline
to predict customer engagement on a per-session basis?

• What if a second retailer presents a similar business
problem and data set, and wants to use this same previous
work?

III. RELATED WORK

Many researchers have studied the process of building
predictive models. Like this paper, many have specifically
focused on time-varying data and underscored the attention
that needs to be paid when preparing such data for machine
learning algorithms. For example, [4] writes of label leakage
in data mining competitions. Later [5] proposes a solution to
avoid leaks by defining the targets of predictive models using
time-based measures.

[3] explicitly defines label leakage and highlights scenarios
in which it impacts predictive modeling. The writers suggest
the “learn-predict separation” paradigm to handle incoming
data by tagging it with time labels in order to avoid contami-
nation by unallowable data during feature engineering. There
has been steady focus on the careful preparation of data such
that data used to evaluate the target does not somehow leak
into learning.

Meanwhile, [9] advocates that emphasis be paid to steps
ordinarily taken outside the modeling and learning stages of a
machine learning endeavor. These include phrasing a problem
in machine learning terms, generating features, and interpreting
and publicizing the results. With generating features being the
focus of [6] and [8], and more recently [2], the goal of this
paper is to systematize the process of phrasing a problem.
This in turn will enable end-users to generate many problems,
analyze the resulting predictive models, and disseminate them.

The L-S-F framework we develop in this paper comple-
ments existing methods for feature engineering over rela-
tional datasets. Propositionalization [6] is a method to flat-
ten an entity for prediction using aggregations. ACORA [8]



Name Description
e An entity – for example, "customer."
eid An entity instance – for example, "customer 24."
t
c

cut-off time point.
t
start

Starting time point for a learning segment.
t
stop

Ending time point for a learning segment.
l Label id.
A List of three tuples < eid, t

c

, l >.
L(.) Labeling function that contains logic for the outcome.
w

l

The time span of data after a t
c

used by the labeling functions to come up with a label (time delta)
lead How far ahead of time to predict the outcome (time delta).
lag How much past data to use for the prediction (time delta).
eidD Data pertaining to a particular instance of an entity.
n
w

The upper bound on the number of t
c

’s to form
O Amount of time between two consecutive t

c

’s when n
w

> 1 (time delta)
gap The space between two consecutive training examples from the same entity instance (time delta)
anchor Time point used to anchor lag from. If a prediction is desired as soon as an entity instance appears in the

data, this is set to START

TABLE I. NOTATIONS AND DEFINITIONS. ALSO INCLUDED HERE ARE THE PARAMETERS FOR THE L-S-F FRAMEWORK. ALL TIME POINTS ARE
EXPRESSED IN EPOCH TIME AND ALL TIME DELTAS ARE EXPERESSED IN SECONDS .

adds distribution-based aggregates. Deep Feature Synthesis [2]
builds features by stacking functions across relationships in the
dataset.

IV. LABEL-SEGMENT-FEATURIZE

As we worked through numerous data science problems
across domains, we identified several underlying commonali-
ties. In a typical situation, a data scientist building a predictive
model will start by working with a written or spoken definition
of the outcome the end user is interested in predicting, as
well as constraints, such as how far ahead of time the end
user wishes to make the prediction (lead) or how much data
should be used to do so lag. Given this information, we divide
the workflow, in which raw data is transformed into training
examples, into three steps: Label, Segment and Featurize. In
the next three subsections, we describe these three steps in
detail, along with the methods we have developed for each.

A. Label

The goal of the Label step is to traverse through an entity-
instance’s data and identify a list of three tuples: < eid, t

c

, l >,
where eid identifies the entity-instance to which the training
example belongs, t

c

the cut-off time point (or index) prior
to which data can be used for learning the model, and l the
category of outcome (in binary cases, "positive" or "negative").
We further break this step down into two substeps:

1) defining a labeling functions and
2) traversing the data in search of labels.

Defining a labeling functions: A labeling functions, L(.),
contains a user-defined logic that

• is applied to the the data within the labeling window,
• can optionally use data prior to the cut-off t

c

, but must
use the data within the labeling window, and

• produces a label the user is interested in predicting.

When we attempted to define labeling functions for a variety
of well-known predictive problems over different domains, we

Labeling Window

Pick t

c

Evaluate features

Reduce to Label

any(F,T,F)

t

c

F

1

2

3

FT

T

Fig. 2. The feature-reduce abstraction for defining prediction labels. It works
by calculating a feature value for each event/sample in the labeling window.
In this example, we are calculating a binary feature at each event (purchase
event or not). Then, it reduces that list of features to a single label using a
function such as ANY

realized that they typically share two additional characteristics.
First, samples within the window are each transformed into
another value, and in almost every case, this value is equiv-
alent to a feature in the machine learning sense. Second, an
aggregation logic is applied to these values in order to generate
the label.

Noting these consistencies, we created a feature-reduce

abstraction. This abstraction allows data scientists to develop
their own labeling functions with the same language they will
later use to develop features. Examples of how feature-reduce

is applied in 3 different problems in 3 different domains can
be seen in Table II.

Traversal algorithm: Given the labeling functions, our next
goal is to design a traversal algorithm that searches through
the data to identify several possible training examples. A
simple design of such an algorithm would entail setting t

c

at
every time point where a data sample is present in the entity-
instance’s time span, and evaluating the labeling functions. To
do this in a tractable way, we propose to iterate over the data



Outcome Feature Reduce Window
At least one purchase in the next week Compare("event_type","=","purchase") any 7 days
Rolling average temperature greater than 100
degrees over last 10 samples

mean = RollingMean("temp",(10, "samples"))
Compare(mean, ">", 100)

all 10 observations

Positive bank account balance for next 30 days Compare("balance", ">", 0) all 30 days

TABLE II. THREE EXAMPLES FROM DIFFERENT DOMAINS OF HOW TO DEFINE PREDICTION PROBLEMS USING FEATURE-REDUCE IN THE L-S-F
FRAMEWORK BY SPECIFYING A (FEATURE), REDUCE FUNCTION, AND PREDICTION WINDOW

Algorithm 1 Traversal algorithm
1: procedure TRAVERSE(L(.),O, w

l

, n
w

, eidD, eid, A)
2: eidD: Data from an entity instance eid.
3: t

s

 starttime(eid)
4: T

c

 SET-CUTOFF-TIMES (O, t
s

,n
w

)
5: for t

c

2 T
c

do
6: D  eidD[t

s

: t
c

+ w
l

]
7:
8: l L(D)
9: A[ { eid, t

c

, l }
10: return A
11:
12: procedure SET-CUTOFF-TIMES(O, t

s

, n
w

)
13: T

c

[1] = t
s

14: for i = 2 to n
w

do
15: T

c

[i] = (T
c

[i� 1] +O)

16: return { T
c

}

samples by specifying the number of t
c

’s to consider, n
w

,
the spacing between them, O, and the size of the labeling
window, w

l

. Pseudocode is presented in Algorithm 1, and
the process is illustrated through an example retail dataset in
Figure 3. It is important to note that the traversal algorithm
does not make use of any information about the logic inside
the labeling functions. The only information that is shared
between it and the labeling functions is the length of labeling
window. We imagine that several different and perhaps efficient
alternatives are possible for the traversal algorithm. To preserve
generalizability, we recommend alternate designs to follow
the abstractions for the labeling function, and the inputs
and outputs, we suggest for the algorithm. For example, an
alternate algorithm can use the size of labeling window to skip
portions of time series after one instance label is found. While
using information from the logic inside the labeling function
can aid in an efficient traversal, it could potentially result in a
very specific traversal algorithm.

B. Segment

Given the lead and lag parameters and the labels,
this step identifies segments defined by the four tuples <
eid, t

start

, t
stop

, l >, where t
start

and t
stop

represent the time
points that will bound the samples used for learning. We call
this the “learning segment.”

Lead, Lag, and units

• Lead: For a predictive problem, the lead time specifies
how far ahead the user wants to predict the label. For
many predictive problems, predicting far ahead (high

Algorithm 2 Segmentation algorithm
1: procedure SEGMENT(A, lag, lead, anchor, gap, multi,

randomize)
2: S={ }
3: for id 2 eid do
4: t

s

 starttime(id)
5: T  t

c

where eid = id and t
c

> t
s

+ lead+ lag
6: l̄ l where eid = id and t

c

> t
s

+ lead+ lag
7: if anchor = ’START’ then
8: t

stop

= t
s

+ lag
9: return S[{eid, t

s

, t
stop

, l̄[1]}
10: else if multi = ‘FALSE’ then
11: if randomize = ‘TRUE’ then
12: index rand(len(T ))
13: t T [index]
14: l l̄[index]
15: S[ FORMSEGMENT(eid, t, lead, lag, l)
16: else if randomize = ‘FALSE’ then
17: t T [1]
18: l l̄[1]
19: S[ FORMSEGMENT(eid, t, lead, lag, l)
20: else if multi = ’TRUE’ then
21: q  t

s

+ lead+ lag
22: for t 2 T do
23: if t > q then
24: index FIND(T == t)
25: l l̄[index]
26: S[ FORMSEGMENT(eid,t, lead, lag, l)
27: q  t+ gap+ lag + lead
28: else S[ { }
29:
30: procedure FORMSEGMENT(eid, t, lead, lag, l)
31: t

stop

 t� lead
32: t

start

 t
stop

� lag
33: return {eid, t

start

, t
stop

, l}

lead) enables value creation, and makes predictive prob-
lems interesting. For example, a retailer may want to
predict future customer churn as soon as possible.

• Lag: Next, we must decide how much historical data we
wish to use to predict the label. This value is known as
the lag. Numerous considerations are taken into account
to pick this value, including memory and computational
constraints, storage, and the amount of time that has
passed since the last important event. We also pick a point
to calculate the lag relative to called the anchor. Typically,
there are three options for setting the anchor: the first time
or data point for the entity-instance t

s

, the point in time
t
c

� lead, or a fixed time point in the entity-instance’s
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Fig. 3. Figure illustrating the process of traversing, labeling, and segmenting the data to generate training examples for feature engineering. An event time
series from customer transactions data base is chosen as an example. Each node represents a customer transaction and colors represent different types of events
- blue- purchase, yellow - browse. Exact time stamps are shown below the node. For this customers data, it sets 4 tc’s. The labeling window is set as 1 event
and the outcome of interest is whether or not a customer makes a purchase. In training examples are extracted based lag = 2 events, and lead = 0. Finally, 2
non-overlapping training examples are selected (gap in this case is set to zero).

lifespan.
• Units: For both lead and lag, we specify the amount of

past data in absolute units- seconds. We allow users to
specify in relative units-the last 10 samples or events.
When relative units are specified a function transforms
them into time delta in seconds by scanning the data.

Considerations for selecting from labeled examples: After
the label step, a given entity-instance may lead to multiple oc-
currences of the outcome of interest. For example, a customer
may have bought a particular product multiple times, or a
patient may have several seizure events. In such cases, the user
must decide whether to extract multiple training examples, and,
if they choose to extract just one, which one they should pick.
Below, we walk through these choices, and the considerations
they entail.

• Picking multiple examples: The user may choose to
extract training examples (and their corresponding learn-
ing segments) from a single entity-instance’s data. In
cases where not many instances of the entity exist, this
is a valuable way to maximize training examples. In
particular, the user may wish to extract non-overlapping
learning segments using the gap parameter. Two learning
segments are considered non-overlapping when the seg-
ments between their t

start

and t
stop

points do not overlap.

In order to extract multiple exemplars, the segmentation
algorithm must iterate over the labeled examples to find
non-overlapping segments where the gap constraint is
satisfied. In algorithm 2, we present a greedy approach
to extracting non-overlapping learning segments.

• Picking a single example: When the user chooses to create
only one example from each entity-instance, a natural
question is: which one? Two possible choices are:
� First: the user may choose the first occurrence.
� Random: the user may pick an example randomly. 2

• Maintaining class balance: When there are multiple ex-
amples from the same entity instance, both positive and
negative, we choose those that help maintain the balance.

Segmentation algorithm: With lead and lag defined, and
either single or multiple training examples chosen, we present
a greedy approach to form learning segment in Algorithm 2. It
is important to note that the segmentation algorithm does not
use any information from the or the traversal algorithm other
then the list of labeled exemplars. Unlike traversal algorithm,
it does not operate on the actual data. Similar to the traversal
algorithm, we see different ways to design the segmentation
algorithm.

2This allows a possible feature that counts the number of past occurrences
of an outcome, which could be predictive of the outcome in future.



V. FEATURE ENGINEERING

In the previous step, we selected a subset of the training
examples and determined the learning segment to use to build
features for them. Our next step is to compute features and
produce a matrix ready for machine learning. To compute
features using only allowable data, we can approach fea-
ture engineering via two methods. The first method involves
manipulating the data before passing it on to the feature
engineering software. In the second, we propose changes to
core mathematical operations utilized to compute features.

Manipulating data: In this approach, to extract features for
each training example in S, we use the corresponding t

start

and t
stop

and remove all observations for any entity whose
time stamps are not within those two boundaries. Thus the
feature engineering software is ”unaware” of any data that
exists beyond those time points. The obvious advantage of
this approach is that the user does not have to change their
feature engineering software; however, this method can require
significant computational effort in identifying the observations,
which could be split across multiple tables or do not fall within
those timestamps, as well as memory to create a copy of the
subset of the data.

Manipulating operators: Alternately, we propose to rethink
the typical input-output of the mathematical functions used to
engineer features. Feature engineering relies on mathematical
operators such as max, min, average, among many others.
Typically these functions take an array of values and output
a single value, f  g(ā). Instead, to account for using
only allowable data, we modify these functions as f , t  
g
b

(ā, t̄
a

, t
start

, t
stop

), where t̄
a

is an array of time stamps
that correspond to the observations in ā, f is the computed
output of the function, and t corresponds to the maximum
time stamp of any observation in the ā used to compute the
feature. This new function modifies the original g(.) function
as follows:

Algorithm 3 Bounded feature functions
1: procedure g

b

(ā, t̄
a

, t
start

, t
stop

)
2: indices t

start

< t̄
a

< t
stop

3: ā
b

 a[indices]
4: f = g(ā

b

)
5: t = max(t̄

a

[indices])
6: return f , t

Thus we redefine the feature functions in any of the generic
feature extraction software [2].

VI. EXPERIMENTAL RESULTS

We begin this section by presenting how L-S-F generalizes.
To illustrate this, we first pick two different domains, present a
generic data model for each, and demonstrate how users can set
up prediction problems by simply tweaking a few parameters.
Next, we pick a specific data set and demonstrate how L-S-
F framework can help users explore multiple problems, but
investigate impact of different parameters on the predictive
models accuracy.

Tables Fields
Online retail

Customers C
id

, dc
i,...,k, xc

i,...,k

Logs T , C
id

, dl
i,...,k, xl

i,...,k

meta
i

dc
i

, val
Sensors

Components Co
id

, dc
i,...,k, xc

i,...,k

Logs T , Co
id

, dl
i,...,k, xl

i,...,k

meta
i

dc
i

, val

TABLE III. GENERIC DATA MODELS IN THREE DIFFERENT DOMAINS.

A. Generalizability across domains

The typical data model contains the entity of most interest
to data scientists, a transactions table with observations over
time, and optionally one or more tables with meta-information.

Online retail: In this domain, the entity over which most pre-
diction problems are defined is the customer. The "customer"
table can have several discrete (ordinal or categorical) variables
and numeric variables to begin with, and there is a logs table
with every interaction any customer has made with platform.
Each entry has a time stamp T and a customer id, identifying
the customer to whom that line belongs. There are typically
several tables containing meta-information. When presented
with dataset in this model, we are able to define numerous
predictive problems by simply setting the feature function to
be:

Compare(dc
i

,"=",val)

for any of the discrete/categorical variables and

y = rollagg(xc
i

,(n, "samples"))
Compare(y, ">", th)

for any continuous variables, where rollagg is an aggregation
function like rolling mean and n is number of samples, th is
the threshold. Then one can specify a reduce function over a
labeling window. We present an example of a problem that
could be defined over this type of data, in the first example
in Table II. In that example, the categorical variable dc

i

=
event_type and val corresponds to purchase.

Once the data is ingested in the L-S-F framework, a
user can explore numerous prediction problems, by simply
specifying parameters for these functions, changing the reduce

functions as necessary and setting parameters for traversal and
segmentation.

Sensors data: In this domain, data is collected from sensors,
which record observations about a component or phenomenon.
Each sensor’s data is usually aggregated over a period of time
using several aggregation functions (mean, standard deviation
and others), and the resulting data is provided as numeric
values in the logs table. The time stamps in T are regular.
Discrete values are often stored, which capture the settings
and/or state of the component during that time interval. Tables
carrying meta-information about the sensors, the component,
and other variables may also be present. Similar to the previous
example, we can specify a feature function on any of them
continuous variables as:



Experiment Feature Reduce Window
P1: Reach funding goal CumSum("donation_amount") >= Project.funding_goal any 1
P2: Reach funding goal in
x days

CumSum("donation_amount") >= Project.funding_goal any 30, 60, 90 days

P3: x percent of donation
over y dollars

num_donations = CumCount("donations")
num_large= CumCount("donations",

where="donation_total>y")
num_donations/num_large > x

all 1

P4: All donations have tip num_donations = CumCount("donations")
num_tips = CumCount("donations",

where="included_optional_support=1")
num_tips / num_donations == 1

all 1

P5: More than x dona-
tions

CumCount("donations") > x any 1

TABLE IV. ALL FIVE PREDICTIVE PROBLEMS OVER KDD-2014 DATA DEFINED USING feature-reduce ABSTRACTION. TOGETHER WITH THESE
feature-reduce DEFINITION AND TABLE VI, ALL FIVE PROBLEMS ARE DEFINED IN THE L-S-F FRAMEWORK.

y = rollagg("xc
i

",(ns, "samples"))
Compare(y, ">", th)

We present an example of a problem that could be defined
over this type of data, in the second example in Table II. In
that example, the continuous variable xc

i

= temp and th
corresponds to 100. Similar to above, users can explore many
predictive problems by systematically specifying the different
feature and reduce functions.

B. Exploring predictive models

The two foundational claims we make for the L-S-F
prediction engineering framework are:

– It allows users to switch between predictive problem
definitions by simply changing a few lines of code.

– By simultaneously abstracting common data preparation
tasks away from the user and enabling them to tweak the
parameters of the predictive problem definition, it enables
them to focus on exploring variations in the predictive
problem definition, which could generate immense value.
Table V highlights some common variations.

In this section, we choose a well-known, publicly available
data set from KDD-2014, and demonstrate how we can easily
set multiple prediction problems (see Table IV) and explore
several variations of those problems by simply tweaking pa-
rameters in the L-S-F framework.

Exploratory question
How far ahead can I predict an outcome?: Users may want to
change the lead parameter to see if they can predict an outcome
sooner rather than later.
How sensitive is the predictive accuracy to a parameter in
my problem definition?: Often, users flexible with values for the
parameters for the prediction problem itself.
How much historical data is needed to predict the outcome?:
The user can control prediction time by setting the lag parameter
to the desired time when the anchor is set to start.

TABLE V. THREE EXAMPLES OF EXPLORATORY QUESTIONS USERS
CAN ASK WITH THE PREDICTION ENGINEERING FRAMEWORK IN PLACE

THAT ULTIMATELY AIDS IN DERIVING VALUE OUT OF THE DATA.

Parameter Parameter choice
P1: Reach funding goal Lag 1 3 5 7 days

P2: Reach funding within Lag 3 6 9 days
y days 30 60 90

P3: x% of donations over y
dollars

x%, y [> 30%, $> 100],
[> 35%, $< 10]

Lag 3 6 9 days
P4: All donations have tip Lag 3 6 9 days

P5: More than x donations x 10
Lag 3 6 9 days

TABLE VI. PARAMETERS FOR EACH PREDICTION PROBLEM AND
THEIR POSSIBLE VALUES

Dataset: The KDD-2014 data set we used for our experiment
comprises the metadata, resource requests, and donation his-
tory from the 50,000 most recent projects before 2014. The
competition defined the related prediction problem as follows:
Using past projects’ histories on DonorsChoose.org, predict

if a crowd-funded project is “exciting”. For the purposes
of demonstrating the efficacy of L-S-F, we choose to define
multiple prediction problems over fields that varied with time,
such as a project’s donation history.

Table IV presents 5 prediction problems we explored in
this dataset and how they are defined using feature-reduce.
The questions in Table V translate to the parameters presented
in Table VI. The parameters were chosen after we conducted
an initial exploration of the data using the distributions in
Figure 4. To build a feature matrix, we used the Deep Feature
Synthesis algorithm3. With the feature matrix and labels, we
trained a random forest and applied 10-fold cross validation4.

In the following subsections, we present the rationale
behind the problems we selected, as well as their parameters.
Results for all prediction problems and parameter settings are
displayed in Figure 5.

P1: Predict whether a project will reach its funding goal:
For this problem, we predict whether or not a project will

3Implementation provided by Featuretools (docs.featuretools.com)
4Implementation provided by scikit-learn [7]
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Fig. 4. Distributions that were used to inform the paramters to use for the each of the prediction problems
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Fig. 5. The AUCs achieved as the lag parameter is varied for different prediction problems. The error bars represent the standard deviation across the folds
of cross validation. While increasing the amount of past data increases prediction accuracy in all cases, the magnitude of the increases and error bound vary
widely.

reach its funding goal within the allotted time, as soon as a
project is posted to DonorsChoose. We set the goal as 100%
of requested funds. Out of the 50,000 projects we chose for
this study, 17,546 projects do not reach their funding goal,
even after 150 days. Because we aim to be able to predict
this outcome as soon as the project is posted to the website,
we choose the anchor to be the starting point, and vary the
lag from 1 day to 9 days. To be able to use a total lag of 9
days and keep the same projects for training, we remove all
the projects that were funded within the first 10 days.

P2: Predict whether a project will reach its funding goal
in x days: A natural follow-up to the previous question is to
ask whether the project will reach its funding goal within a
certain number of days. This may be helpful for teachers, who
could then plan for when they will have the funds in hand.

We see that a significant proportion of the projects were
funded within 30 days, with smaller portions funded within 60
days and 90 days, making them reasonable parameter choices.
We would like to be able to predict these funding windows
within 3, 6 or 9 days of the proposal being posted.

P3: Predict whether a project has x% of its donations over
or under y dollars: The next question we target is whether

a project attracts a lot of small donations (“grassroots”), or a
significant proportion of large donations (“big donors”). This
sort of labeling could be valuable to DonorsChoose.org, who
could use it to to match donors with projects that fit their
donation style.

Using the distribution of individual donation amounts
across all projects, we see that many donations are under $10
(30% of total donations), and a relatively smaller portion are
above $100 (2% of total donations). To qualify as a project that
invokes grassroots-level interest, we set the donation threshold
at $10, and classify the projects where 30% of donations
received were under this amount. To classify the projects that
have a potential to attract big donors, we set the donation
threshold to be $100, and require at least 35% of the donations
to be above this amount.

P4: Predict whether a project will receive tips with dona-
tions: By default, DonorsChoose.org adds a 15% tip to each
donation unless the donor unchecks a box. As a result, most
donations come with a tip. For most projects, this number is
all, which translates to a value of 1. For a very small portion
of projects, however, some number of donations come without
tips. In this prediction problem, as soon as a project is posted,



we attempt to predict whether or not the donations it garners
will all have tips.

P5: Predict whether a project will receive more then 10
donations: Finally, we attempt to predict whether a project
will receive more then a certain number of donations, which
is indicative of its popularity. Companies doing matching
offers or other forms of corporate outreach are interested in
engaging with as many people as possible, so they may want
to focus their attention on these projects. We observed that
most projects receive 10 donations or fewer, and that a small
portion receive more then that. Again, we attempt to predict
this with a lag of 3, 6, or 9 days.

VII. DISCUSSION

Towards productivity gains for data scientists: Our results
show how a data scientist can rapidly formulate and solve
prediction problems to respond to an increased demand for
predictive models.

The productivity gains from L-S-F allowed us to answer a
number of interesting questions:

• What was the hardest problem? Predicting whether a
project would be fully funded within 90 days was the most
difficult problem. Even taking into account the donations
during the first 9 days did not improve the AUC.

• Which problem would be most helped by waiting
longer before making a prediction? Predicting whether
a project would garner tips alongside all its donations can
gain a significant boost in AUC by taking into account
the observations as they come in.

• Which problem achieved the highest AUC? Predicting
whether a project would become popular by exceeding a
certain number of donations achieved the highest AUC.

The ability to answer exploratory questions is vital for
addressing the appetite for predictive models by stakehold-
ers in any organization. In this case, donors, teachers, and
DonorsChoose.org itself may each have a different objective.
For example, a donor may be interested in knowing how their
donation affects a project early in its funding campaign (P1
and P2), while DonorsChoose may be interested in maximiz-
ing user engagement with their website by featuring certain
projects (P4). A teacher may be interested in how different
actions affect the type of donor attracted to a campaign, or its
popularity (P3 and P5).

Through L-S-F, we are able to accommodate all of these
stakeholders. Now, switching between prediction problems
requires users to write just one concise labeling functions
function for the label step, rather than reworking the rest
of the system. In problems P2 and P3, we even define this
function with parameters to aid in exploration. Likewise, we
parametrize the assemblage of learning segments for feature
engineering, in order to enable iteration over important pre-
diction options.

All 5 prediction problems use this flexibility to explore
different options for the lag parameter. Figure 5 demonstrates
how the impact of lag varies greatly from problem to problem.
Understanding this impact with empirical data helps data
scientists and stakeholders make decisions with more complete
information.

Importantly, these results show how the L-S-F frame-
work complements existing tools without overlapping with the
functionality of those tools. For our experiments, we easily
integrated with external libraries for for feature engineering,
machine learning, and model evaluation.

Towards a generalizable, structured process: One of our
fundamental contributions is giving structure to a process that
is currently executed in an ad-hoc fashion.

The heterogeneity inherent in building predictive models
presented the greatest challenge to developing this general
structure. As we encountered disparate needs and edge cases
across domains, we were forced to discard a number of com-
plete designs, and to repeatedly come up with new abstractions
to ensure that every application and scenario was covered.

Ultimately, this led us to separate the prediction engineer-
ing process into three steps: Label, Segment and Featurize.
This separation, while intuitive, is also well-reasoned, and
allows for assimilation of the multitude of scenarios in which
data presents itself. For example, when data is already labeled,
users may only want to use Segment and Featurize. This would
be the case if one wanted to use this framework for the recent
competition form, KAGGLE, mentioned in the introduction.
Additionally, we imagine that these three steps could be carried
out by different stakeholders within a domain. For example,
Label could be developed by domain experts, while Segment
and Featurize could be executed by data scientists.

Underneath each of those steps, we defined abstractions,
as well as a minimal set of parameters that can service the
heterogeneity. These include establishing the characteristics
of the labeling functions functions, using a window of data
for labeling, defining a cut-off time point t

c

, and providing
parameters such as anchor, gap, and multi, in addition to the
obvious lead and lag.

Given these well-defined abstractions and parameters, we
defined two algorithms, the Traversal algorithm and the
Segmentation algorithm. Although we provide our imple-
mentations, we imagine that better and efficient approaches
will emerge for each.

VIII. CONCLUSION

The L-S-F framework makes it possible for data scientists
to build predictive models more effectively. It accomplishes
this through clear abstractions that isolate parameters of the
predictive modelling process. Our experience demonstrates that
L-S-F solves common challenges, and allows the data scientist
to focus on how to best achieve a goal using a predictive
model rather than the underlying machinery. We conclude that
prediction engineering frameworks like L-S-F have the ability
to change how data scientists build predictive models.
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