
Deep Feature Synthesis:
Towards Automating Data Science Endeavors

James Max Kanter
CSAIL, MIT

Cambridge, MA - 02139
kanter@mit.edu

Kalyan Veeramachaneni
CSAIL, MIT

Cambridge, MA- 02139
kalyan@csail.mit.edu

Abstract—In this paper, we develop the Data Science Ma-
chine, which is able to derive predictive models from raw data
automatically. To achieve this automation, we first propose and
develop the Deep Feature Synthesis algorithm for automatically
generating features for relational datasets. The algorithm follows
relationships in the data to a base field, and then sequentially
applies mathematical functions along that path to create the final
feature. Second, we implement a generalizable machine learning
pipeline and tune it using a novel Gaussian Copula process based
approach. We entered the Data Science Machine in 3 data science
competitions that featured 906 other data science teams. Our
approach beats 615 teams in these data science competitions. In
2 of the 3 competitions we beat a majority of competitors, and
in the third, we achieved 94% of the best competitor’s score. In
the best case, with an ongoing competition, we beat 85.6% of the
teams and achieved 95.7% of the top submissions score.

I. INTRODUCTION

Data science consists of deriving insights, knowledge, and
predictive models from data. This endeavor includes cleaning
and curating at one end and dissemination of results at the
other, and data collection and assimilation may also be in-
volved. After the successful development and proliferation of
systems and software that are able to efficiently store, retrieve,
and process data, attention has now shifted to analytics, both
predictive and correlative. Our goal is to make these endeavors
more efficient, enjoyable, and successful.

To begin with, we observed that many data science prob-
lems, such as the ones released by KAGGLE, and competitions
at conferences (KDD cup, IJCAI, ECML) have a few common
properties. First, the data is structured and relational, usually
presented as a set of tables with relational links. Second,
the data captures some aspect of human interactions with a
complex system. Third, the presented problem attempts to
predict some aspect of human behavior, decisions, or activities
(e.g., to predict whether a customer will buy again after a sale
[IJCAI], whether a project will get funded by donors [KDD Cup
2014], or even where a taxi rider will choose to go [ECML]).

Given a prediction problem, the data scientist must first
form variables, otherwise known as features. The data scientist
may start by using some static fields (e.g. gender, age, etc.)
from the tables as features, then form some specialized features
by intuiting what might predict the outcome. Next, the scientist
may develop new features that transform the raw fields into
different measures (e.g. “percentile of a certain feature”). This
is illustrated in the first three blocks of Figure 1.

Transforming raw data into features is often the part of the
process that most heavily involves humans, because it is driven
by intuition. While recent developments in deep learning and
automated processing of images, text, and signals have enabled
significant automation in feature engineering for those data
types, feature engineering for relational and human behavioral
data remains iterative, human-intuition driven, and challenging,
and hence, time consuming. At the same time, because the
efficacy of a machine learning algorithm relies heavily on the
input features [1], any replacement for a human must be able
to engineer them acceptably well .

To this end, we developed a feature synthesis algorithm
called Deep Feature Synthesis. Although automatic in nature,
the algorithm captures features that are usually supported by
human intuition.

Once features are synthesized, one may select from several
classification methodologies (svm, neural networks, etc.) and
fine-tune the parameters [2], or cluster the data and build
cluster-wise models (as shown in the fourth block of Fig-
ure 1). To explore these varied options, we also designed
and implemented a generalized machine learning pathway and
autotuning approach.

With these components in place, we present the Data
Science Machine — an automated system for generating
predictive models from raw data. It starts with a relational
database and automatically generates features to be used
for predictive modeling. Most parameters of the system are
optimized automatically, in pursuit of good general purpose
performance.

Our contributions through this paper are as follows:

Designed the Deep Feature Synthesis algorithm, which is
capable of generating features that express a rich feature
space

Developed an end-to-end Data Science Machine which can:
(a) automatically generate features via Deep Feature Syn-

thesis
(b) autotune a machine learning pathway to extract the

most value out of the synthesized features
(c) produce submissions for online data science competi-

tions
Matched human level performance when competing in data

science competitions using the Data Science Machine

Paper Summary: In Section II, we explain the algorithm for
Deep Feature Synthesis, and we detail the implementation inCopyright notice: 978-1-4673-8273-1/15/$31.00 c©2015 IEEE

Organize

Analyst

<Scripts>Think of
explanations

Data Engineer Machine Learning
Researcher

Formulate ML approach
Shape transform data
Build models
RefineExtract Variables

Formulate labels

Predict x?
Correlation to y?

Interpret Model

Ti
m

e
se

rie
s

D
is

cr
im

in
at

or
y

St
ac

ke
d

Represent

Flat

t=2 t=3

Fig. 1. A typical data science endeavor. It started with an analyst positing a question: Could we predict if x or y is correlated to z? These questions are usually
defined based on some need of the business or researcher holding the data. Second, given a prediction problem, a data engineer posits explanatory variables and
writes scripts to extract those variables. Given these variables/features and representations, the machine learning researcher builds models for given predictive
goals, and iterates over different modeling techniques. Choices are made within the space of modeling approaches to identify the best generalizable approach
for the prediction problem at hand. A data scientist can undergo the entire process; that is, positing the question and forming variables for building, iterating,
and validating the models.

Section III. In Sections IV and V, we describe the generalized
machine learning pathway and tuning process. We present our
results in Section VI, and discuss them in VII. We summarize
how the Data Science Machine fits in with related works in
VIII. Finally, we conclude and propose future work in Section
IX.

II. DEEP FEATURE SYNTHESIS

Deep Feature Synthesis is an algorithm that automatically
generates features for relational datasets. In essence, the algo-
rithm follows relationships in the data to a base field, and then
sequentially applies mathematical functions along that path to
create the final feature. By stacking calculations sequentially,
we observe that we can define each new feature as having a
certain depth, d. Hence, we call the algorithm Deep Feature
Synthesis. In this section, we explain the motivation for Deep
Feature Synthesis, define the feature synthesis abstractions, and
present the algorithm.

A. Prototypical Problems and Motivation

Let us consider a hypothetical dataset for an e-commerce
website. Our goal is calculate features that describe customers’
behaviors based on all available data. The schema for this
dataset is shown in Figure 2.

To think like a data scientist, we might start by asking
questions that could be translated into features that describe a
customer — for instance, “how often does this customer make
a purchase?” or “how long has it been since this customer’s
last purchase?”. We might also look at entities related to a
customer, and ask questions about them — for instance, “how

OrdersCustomers

Products OrderProducts

Fig. 2. A simplified schema for an e-commerce website. There are 4 entities.
An arrow from one entity to another signifies that the first entity references
the second in the database.

much does the total order price vary for the customer?” or
“does this customer typically buy luxurious or economical
products?”. These questions can be turned into features by
following relationships, aggregating values, and calculating
new features. Our goal is to design an algorithm capable of
generating the calculations that result in these types of features,
or can act as proxy quantities.

B. Feature Synthesis Abstractions

The input to Deep Feature Synthesis is a set of intercon-
nected entities and the tables associated with them. There is
a unique identifier for each instance of an entity in the table.
Optionally, an entity can refer to an instance of a related entity
by using the related entity’s unique identifier. An instance of
the entity has features which fall into one of the following data
types: numeric, categorical, timestamps and freetext.

Notationally, for a given dataset, we have entities given by
E1...K , where each entity table has 1 . . . J features. We denote

Fig. 3. Illustration of computational constraints when synthesizing each feature type. Both rfeat and dfeat features can be synthesized independently, while
efeat features depend on both rfeat and dfeat features. One instantiation of an approach for Deep Feature Synthesis is given in Algorithm 1.

a specific entry as xki,j , which is the value for feature j for the
ith instance of the kthentity.

Next, given entities, their data tables, and relationships we
define a number of mathematical functions that are applied at
two different levels: at the entity level and at the relational
level. We present these functions below. Consider an entity
Ek for which we are assembling the features. For notational
convenience we drop k that is used to represent an specific
entity.

The first set of features is calculated by considering the
features and their values in the table corresponding to the entity
k alone. These are called entity features, and we describe them
below.

Entity features (efeat): Entity features derive features by
computing a value for each entry xi,j . These features can
be based on the computation function applied element-wise
to the array x:,j . Examples include functions that translate
an existing feature in an entity table into another type of
value, like conversion of a categorical string data type to a
pre-decided unique numeric value or rounding of a numerical
value. Other examples include translation of a timestamp into 4
distinct features — weekday (1-7), day of the month (1-30/31),
month of the year (1-12) or hour of the day (1-24).

These features also include applying a function to the entire
set of values for the jth feature,x:,j , and xi,j , given by:

xi,j′ = efeat(x:,j , i). (1)

An example of such a computation is a cumulative distribution
function (cdf)-based feature. To generate this feature, we form
a density function over x:,j , and then, evaluate the cumulative
density value for xi,j (or percentile), thus forming a new
feature.

The second set of features is derived by jointly analyzing
two related entities, El and Ek.These two entities relate to
each other in one of two ways: forward or backward.

Forward: A forward relationship is between an instance m of
entity El, and a single instance of another entity i in Ek. This
is considered the forward relationship because i has an explicit

dependence on m. In the above e-commerce example, the
Orders entity has a forward relationship with the Customers;
that is, each order in the Orders table is related to only one
customer.

Backward: The backward relation is the relationship from an
instance i in Ek to all the instances m = {1 . . .M} in El that
have forward relationship to k. In the same example as above,
the Customers entity has a backward relationship with Orders;
that is, many orders can point to the same customer.

Direct Features (dfeat): Direct features are applied over
the forward relationships. In these, features in a related
entity i ∈ Ek are directly transferred as features for the
m ∈ El.

Relational features (rfeat): Relational features are applied
over the backward relationships. They are derived for
an instance i of entity Ek by applying a mathematical
function to xl:,j|ek=i, which is a collection of values for
feature j in related entity El, assembled by extracting all
the values for feature j in entity El where the identifier
of Ek is ek = i. This transformation is given by

xki,j′ = rfeat(xl:,j|ek=i). (2)

Some examples of rfeat functions are min, max, and
count. Other rfeat functions include functions that
could be applied to the probability density function over
xl:,j|ek=i.

C. Deep Feature Synthesis algorithm

To describe the Deep Feature Synthesis algorithm, we first
consider a dataset of K entities, denoted as E1...K . Our goal
is to extract rfeat, dfeat, and efeat features for a target
Ek. Additionally, we know all the entities with which Ek has
FORWARD or BACKWARD relationships. These are denoted by
sets EF and EB .

To start, we see that efeat features are created using
features that already exist within the entity. We must first
synthesize rfeat and dfeat features so we can apply
efeat feature to the results. In order to generate rfeat
features for Ek, we use features from entities in EB . Thus,
we must create all features types for each entity in EB before

CustomerID Gender Age AVG(Orders.SUM(Product.Price))

1 ...
2 f 45 $250
3 ...

...

...

...

...

...

...

...

...

...

...
4
...

OrderID Customer ID SUM(Product.Price)
$300

ID OrderID ProductId Product.Price

1

1 3 $200

2

1 1 $100

3

...

4

4 3 $200

...

1
2
3
4
...

2
...
...
2
...

...

...
$200

...

...

ProductID Price
1 $100
2 ...

3 $200
4 ...
... ...

DFEAT

Deep Feature, d=3 Deep Feature, d=2

Deep Feature, d=1

AVG
SUM
MAX
MIN
STD

Base Column

RFEAT

AVG
SUM
MAX
MIN
STD

RFEAT

Fig. 4. An example of a feature that could be generated by Deep Feature Synthesis. The illustration shows how features are calculated at different depths, d,
by traversing relationships between entities.

we can realize rfeat features for Ek. In a similar manner,
we add dfeat features to Ek. These features are realized
using the features from entities in EF , so we must calculate
all features for each entity in EF first. Finally, with all rfeat
and dfeat features added to Ek, we can generate efeat
features. Figure 3 visualizes the sequence of computations in
order to correctly generate each feature type.

Next, we consider a scenario where an entity related to the
target entity has its own related entities. To handle this case
we can recursively generate features using the same sequence
described above. The recursion can terminate when we reach
a certain depth or there are no related entities.

Algorithm 1 Generating features for target entity

1: function MAKE_FEATURES(Ei, E1:M , EV)
2: EV = EV ∪ Ei
3: EB = BACKWARD(Ei, E1...M)
4: EF = FORWARD(Ei, E1...M)
5: for Ej ∈ EB do
6: MAKE_FEATURES(Ej , E1...M , EV)
7: F j = F j∪RFEAT(Ei, Ej)

8: for Ej ∈ EF do
9: if Ej ∈ EV then

10: CONTINUE

11: MAKE_FEATURES(Ej , E1...M , EV)
12: F i = F i∪ DFEAT(Ei, Ej)

13: F i = F i∪ EFEAT(Ei)

The algorithm pseudocode for MAKE_FEATURES is pre-
sented above to make features, F i, for the ith entity. The
organization of recursive calls and calculation of each feature
type is in accordance with the constraints explained above.
The RFEAT, DFEAT, and EFEAT functions in the pseudocode
are responsible for synthesizing their respective feature types
based on the provided input. The algorithm stores and returns
information to assist with later uses of the synthesized feature.
This information includes not only feature values, but also
metadata about base features and functions that were applied.

In our algorithm, we choose to calculate rfeat features
before dfeat features, even though there are no constraints
between them. Additionally, EV keeps track of the entities that
we have "visited". On line 10, we make sure to not included

dfeat features for entities we have visited. This ensures we
avoid calculating rfeat features unnecessarily. For example,
consider a case where we are making features for the Customer
entity in our example e-commerce database. It would not make
sense to create a dfeat for each order that pulled in the age
of the customer who placed the order because when we later
create rfeat for Customers, we are going to aggregate each
order based on the customer who placed it, and the orders in
each group will have same value for dfeat features.

Figure 4 shows an example of a feature that is recursively
generated. In this example, we eventually calculate the average
order size for every customer. However, in order to realize
that value, we do intermediate calculations, starting with the
Product entity. First, we calculate a dfeat feature to add the
product’s price to the ProductOrders entity. Next, we calculate
an rfeat feature for Orders by applying the SUM function
to all instances of ProductOrders related to a given instance of
the Orders entity. Finally, we calculate another rfeat feature
to calculate the average total order size for each customer.

D. Growth of number of features

The feature space that can be enumerated by Deep Feature
Synthesis grows very quickly. To understand how it grows,
we analyze the number of features, z, the algorithm will
synthesize for a given entity. Due to the recursive nature of
feature synthesis, the number of features created for an entity
depends on the number created for related entities. Thus, we
let zi represent the number of features we create for an entity
if we recurse i times. Additionally, we assume that all entities
in our dataset start with O(j) features, and have O(n) forward
relationships and O(m) backward relationships.

First, we synthesize rfeat type features for O(m) en-
tities. If we assume there are O(r) rfeat functions, then
we synthesize O(r · zi−1) features for each of the m entities
in a backward relationship for a total of O(r · zi−1 · m)
additional features. Next, we make one dfeat feature for
every feature in entities in a forward relationship. This means
we add O(zi−1 · n) features. Finally, we must make efeat
features using the j original features, as well as the O(zi−1 ·(r·
m+n)) newly synthesized features. We assume there are O(e)
efeat functions. Therefore, we will synthesize an additional
O(e · j + e(zi−1 · (r ·m+ n))) efeat features.

Combining all rfeat, dfeat, and efeat features, we
see that zi = O(zi−1 · (r · m + n)(e + 1) + e · j). At z0
we can only calculate efeat features, so z0 = O(e · j). Let
p = (r ·m+ n)(e+ 1) and q = e · j. Substituting, we get

zi = O (zi−1 · p+ q) ,

and replacing zi−1 by zi−2 · p+ q we get

zi = O
(
zi−2 · p2 + q · p+ q

)
.

Continuing the expansion till z0 we get

zi = O
(
z0 · pi + q · pi−1 + q · pi−2 · · ·+ q

)
.

Replacing z0 = O(e · j) = q in the above equation we get

zi = O
(
q · pi + q · pi−1 + q · pi−2 · · ·+ q

)
zi = O

(
q ·

(
i∑

u=0

pu

))
.

Thus, the closed form for zi is

zi = O

(
(e · j)

i∑
u=0

(r ·m+ n)u · (e+ 1)u

)

III. DEEP FEATURE SYNTHESIS: IMPLEMENTATION

In implementing Deep Feature Synthesis, we aim to rapidly
deploy the Data Science Machine and evaluate the synthesized
features when it encounters a new dataset.

The Data Science Machine and accompanying Deep Fea-
ture Synthesis algorithm are built on top of the MySQL
database using the InnoDB engine for tables. All raw datasets
were manually converted to a MySQL schema for processing
by the Data Science Machine. We implement the logic for cal-
culating, managing, and manipulating the synthesized features
in Python.

We chose to use a relational database due to the natural
parallels between how they store data and the requirements
of Deep Feature Synthesis: in each, entities are represented as
tables and features are represented as columns.

All mathematical functions must provide a Feature Func-
tion interface. A Feature Function takes one or two entities
as inputs depending on the type of feature. Two entities are
required in the case of relational level features, and direct
features where the source is another entity. The function
definition is responsible for determining which columns in the
relationship it can be applied to and how to calculate the output
value.

For performance reasons, the Data Science Machine builds
Feature Functions on top of the functions provided by MySQL.
Currently, the Data Science Machine implements the following
rfeat functions: AVG(), MAX(), MIN(), SUM(), STD(),
and COUNT(). In addition, the system implements the follow-
ing efeat functions: length() to calculate the number of
characters in a text field, and WEEKDAY() and MONTH() to
convert dates to the day of the week or month they occurred.
Despite their simplicity, this small base of functions is enough
to create a wide range of features for us to use in evaluating
the Data Science Machine.

Filter Objects provide a flexible way to select subsets
of data for rfeat functions. They enable construction of
new Filter Objects by combining existing Filter Objects using
logical operators such as “and” or “or”. Filter Objects provide
an interface to return the columns being filtered, as well as a
way to be serialized to a MySQL query.

Filter Objects implement two useful pieces of functionality
for Deep Feature Synthesis. First, they provide a way to apply
rfeat functions only to instances where a certain condition is
true. We call this usage a categorical filter. For example, "total
amount of money spent by this customer on products where
company X manufactured the product" constitutes a categorical
filter. Second, they allow construction of time interval features
by specifying an upper and lower bound on a date field. For
instance, "number of orders this customer placed where the
order was placed after March 31st and before April 30th.

During use, the Data Science Machine constructs database
queries only when necessary. The data required to calculate
a feature may be stored in multiple tables, so we must join
tables to make sure all columns in the SELECT clause or
WHERE clause of a query are accessible. An example query is
in Figure 5. Queries are further optimized to perform multiple
calculations at once to reduce the number joins and table scans.

UPDATE Donors_1 target_table
LEFT JOIN (

SELECT donor_acctid , SUM (amount) as val
FROM Donations rt
GROUP BY donor_acctid
) b

ON b .donor_acctid = target_table .donor_acctid
SET target_table .Donors_1__100 = b .val
WHERE b .donor_acctid = target_table .donor_acctid

Fig. 5. An example MySQL query auto-generated by the Data Science
Machine to create a feature for the Donors entity in the KDD cup 2014 dataset.
This query calculates the total amount given by each donor.

IV. PREDICTIVE MACHINE LEARNING PATHWAY

To use the features created by Deep Feature Synthesis, we
implement a generalized machine learning pathway.

The first step is to formulate a prediction problem. We
achieve this by selecting one of the features in the dataset to
model. We call this feature we wish to predict the target value.

After a target value is selected, we assemble the features
that are appropriate for use in prediction. We call these features
predictors. If predictors are computed using common base data
as the target value, or if they rely on data that does not exist at
the time of the occurrence of the target value, they are filtered
out as invalid. The Data Science Machine also maintains a
database of metadata associated with each entity-feature. This
metadata contains information about the base fields in the
original database that were used to form the feature, as well
as any time dependencies contained within it.

A. Reusable machine learning pathways

With a target feature and predictors selected, the Data
Science Machine implements a parametrized pathway for
data preprocessing, feature selection, dimensionality reduction,
modeling, and evaluation. To tune the parameters, the Data

TABLE I. SUMMARY OF PARAMETERS IN THE MACHINE LEARNING PIPELINE AND THE OPTIMIZED VALUES FROM RUNNING GCP BY DATASET.

Param Default Range Function KDD cup 2014 IJCAI KDD cup 2015
k 1 [1, 6] The number of clusters to make 1 1 2
nc 100 [10, 500] The number of SVD dimensions 389 271 420
γ 100 [10, 100] The percentage of top features selected 32 65 18
rr 1 [1, 10] The ratio to re-weight underrepresented classes 4 8 1
n 200 [50, 500] The number of decision trees in a random forest 387 453 480
md None [1, 20] The maximum depth of the decision trees 19 10 10
β 50 [1, 100] The maximum percentage of features used in decision trees 32 51 34

Science Machine provides a tool for performing intelligent
parameter optimization. The following steps are followed for
machine learning and building predictive models:

Data preprocessing: Prior to entering the machine learning
pathway, we clean the data by removing the null values,
converting the categorical variables using one-hot encoding,
and normalizing the features.

Feature selection and dimensionality reduction: Deep Feature
Synthesis generates a large number of features per entity. To
reduce the size of the feature space, we employ two techniques
sequentially: first, we use Truncated SVD transformation and
select nc components of the SVD; then, we rank each SVD-
feature by calculating its f-value w.r.t to the target value, and
select the γ% highest ranking features.

Modeling: For modeling, we use a random forest by construct-
ing n decision trees. Each decision tree has a depth of md and
uses a fraction of the features denoted by β. For many datasets,
it can be powerful to have a separate model for different
clusters of data points. To incorporate this, we separate training
points into k clusters using a kmeans clustering technique.
We then train a distinct random forest for each cluster. To
predict a label for a test sample, a trained cluster classifier
assigns a cluster label to the data point and then applies the
corresponding model.

In classification problems, sometimes one of the target
value classes is underrepresented. In order to compensate for
this, the modeling stage can re-weight an underrepresented
class by a factor of rr.

In the modeling stage we have introduced four parameters:
n, md, β, k, rr. Next, we present how to autotune this pathway.

V. BAYESIAN PARAMETER OPTIMIZATION USING
GAUSSIAN COPULA PROCESSES

Many stages of the machine learning pipeline have pa-
rameters that could be tuned, and this tuning may have a
noticeable impact on the model performance. A naive grid
search would lead to search in the space of 6 ∗ 490 ∗ 90 ∗
10 ∗ 450 ∗ 20 ∗ 100 = 2, 381, 400, 000, 000 (two trillion, three
hundred eighty-one billion, four hundred million) possibilities
if we consider all possible combinations of parameter values.
To aid in the exploration of this space, we use a Gaussian
Copula Process (GCP). GCP is used to model the relationship
f between parameter choices and the performance of the whole
pathway (Model). Then we sample new parameters and predict
what their performance would be (Sample). Finally, we apply
selection strategies to choose what parameters to use next
(Optimize). We describe each of these steps in detail below.

Model: Typically, a Gaussian process is used to model f
such that for any finite set of N points p̄1...n in X , { f (p̄i)

}Ni=1 has a multivariate Gaussian distribution on RN . The
properties of such a process are determined by the mean
function (commonly taken as zero for centered data) and the
covariance function K : P ×P → R. For an extensive review
of Gaussian Processes, see [3], while their use in Bayesian
optimization is largely explained in [4] and their usage in
tuning parameters of classifiers is explained in [2].

In this paper, we introduce a novel approach for parameter
optimization based on Copula processes as defined by Wilson
et al. in [5] through warping the output space. In GCP, instead
of a Gaussian Process to model the multivariate distribution
of { f (p̄i) }Ni=1, it is done through a mapping Ψ : R → R
that transforms { f (p̄i) }Ni=1 into { Ψ ◦ f (p̄i) }Ni=1, which is
then modeled as a Gaussian Process. By doing this, we change
the assumed Gaussian marginal distribution of each f (p̄) into
a more complex one.

The mapping function: In [5], a parametrized mapping is
learned so that the transformed output is best modelled by
a Gaussian Process. However, such a mapping is unstable;
for many experiments on the same data set, different
mappings were learned. Moreover, the induced univariate
distribution was most of the time almost Gaussian and the
parametrized mapping could not offer a greater flexibility.
To overcome this, we utilize a novel approach where
a marginal distribution is learned from the observed
data through kernel density estimation. More specifically,
consider the parameters p̄ = {p1 . . . pm} and the perfor-
mance function f(p̄). Our first step in the transformation
models the density of { f (p̄i) }Ni=1 using a kernel density
estimator, and then estimates the cdf of this density. We
then generate the cdf values for each value of { f (p̄i)
}Ni=1 and are given by g = cdf(f(p̄)). Assuming that g is
a sample from a standard normal, we apply ψ−1 to values
in g to generate the final values given by h = ψ−1(g).
h represents the transformation of f(.) which we wish
to model using a regular Gaussian process. Hence the
input to the Gaussian process modeling is p̄1...n and the
corresponding h1...n values.

Fitting the covariance function: We use a generalization of a
squared exponential with a periodic component, inspired
by [3], pp. 119-221. We learn the model parameters via
likelihood maximization.

Sample: We sample iteratively some points in P , and predict
their corresponding outcome value f (p̄) using the GCP model,
and then decide which point to select next.

Optimize: This final step is usually made by maximizing
the acquisition function a. The inputs to this function are
derived from f to balance between exploration (testing points
in unexplored areas of the input space P) and exploitation
(testing points for which we predict a high f(p̄) value). In
particular, this enables us to avoid concentrating on the search

near local optima. Given a set of observations (p1...n,f(pn)),
we can thus randomly sample p̄′i in P , predict their output f ′i
and choose the p̄′∗ that maximizes a [2].

VI. EXPERIMENTAL RESULTS

As the Data Science Machine is the first of its kind,
we wish to address a number of questions that are at the
intersection of “how well did the machine do?”, “did it produce
any valuable features?”, and “did automation work?”. We
demonstrate the effectiveness of the Data Science Machine by
applying it to datasets where many data scientists competed for
the best results — KDD cup 2014, IJCAI, and KDD cup 2015.
In each one of these competitions, hundreds of data science
enthusiasts participated in solving a prediction problem defined
by the organizers. The schemas in Figure 6 show the entities
for each dataset, and we briefly describe each of the problems
below.

KDD cup 2014 - Project Excitement: Using past projects’
histories on DonorsChoose.org, predict if a crowd-funded
project is "exciting".

IJCAI - Repeat Buyer Prediction: Using past merchant and
customer shopping data, predict if a customer making a
purchase during a promotional period will turn into a repeat
buyer.

KDD cup 2015 - Student Dropout: Using student interaction
with resources on an online course, predict if the student will
dropout in the next 10 days.

0 20 40 60 80 100 120 140
0.5

0.6

0.7

0.8

0.9

1

Iteration

M
ax

im
um

A
U

C
O

bs
er

ve
d

0 10 20

0.58

0.6

0.62

0.64

0.66

0 10 20

0.85

0.86

Fig. 7. The maximum cross validation AUC score found by iteration for all
three datasets. From top to bottom: KDD cup 2014, IJCAI, KDD cup 2015

To compete, data scientists engage in feature engineering,
modeling, and fine tuning. All three of these activities can
be performed by the Data Science Machine with minimal
human involvement beyond setting initial parameters of the
Data Science Machine such that the computational limits are
maximized. We first ran Data Science Machine with fully
automated feature generation (Deep Feature Synthesis). For
KDD cup 2014, we also constructed time interval features, and
for IJCAI and KDD cup 2015, we created a few categorical
filters. The results of running Deep Feature Synthesis are
presented in Table III.

To determine the optimal parameters for the machine
learning pathway, the Data Science Machine runs the Gaussian

Copula Process based tuning approach. The parameters of the
best run are shown in Table I. The results of running the Data
Science Machine with and without tuning are presented in
Table II.

We compare the results from our experiments with the
public performance in these competitions to help us determine
how Data Science Machine compares to human performance.
Table IV shows how the Data Science Machine fared relative
to other competitors on the leaderboard. The table presents
some basic information about the teams that beat the Data
Science Machine, and the teams that were beaten by it. To
put these scores in perspective, Figure 8 shows how the Data
Science Machine’s score compares to other competitors at each
percentile of the leaderboard. In the next section, we present
our interpretation of these results.

VII. DISCUSSION

In this section, we discuss how the results on all three
datasets reflect the effectiveness of the Data Science Machine
in emulating a data scientist.

Creating valuable synthesized features: In two out of three
competitions, the Data Science Machine achieved > 90% of the
best score achieved by any competitor. In its best performance,
in KDD15, it beat approximately 86% of other competitors. If
the synthesized features had no value, we would not expect
the Data Science Machine to perform so well in the three
competitions. These results demonstrate that Data Science
Machine can produce new features that have some value.

Even in the IJCAI competition, where the Data Science
Machine beat the fewest number of competitors, the Machine
captured information about the problem similar to what would
be gleaned by human intelligence. During the competition, the
sponsors released a benchmark model. The proposed model
used a customer’s history at shops similar to the merchant in
question to make predictions. To do this, they proposed one
way to measure merchant similarity. The sponsors claimed that
this method would achieve an AUC of at least .65. This is
noteworthy, because the Data Science Machine GCP optimized
solution achieved an AUC of more than .66. This means that
the Data Science Machine was able to automatically derive
a model that was at least as good as the human-proposed
one. Additionally, if you look at the rate of improvement as a
competitor’s rank increases, the Data Science Machine ’s score
sits at the point where score improvement plateaus (see Fig. 8).
The Data Science Machine achieved an AUC of 0.6606, while
the AUC of the top competitors was 0.704, a difference of
approximately 0.04. This suggests that the features chosen by
the Data Science Machine captured the major aspects of the
dataset, and only missed out on minor improvements.

In the other two competitions, the Data Science Machine
features were enough to beat a majority of competitors, 86%
in KDD15 and 70% in KDD14. In KDD15 the Data Science
Machine also landed on the plateau of score improvement,
achieving a final score of 0.8621 while the top competitor
stood at 0.90.

This supports our statement that the features synthesized
by the Data Science Machine capture important aspects of the
prediction problem. In KDD14, the Data Science Machine ’s

Donors

Teacher

ResourcesVendors Donations

Schools Projects Outcomes

Essays

Outcome

User

BehaviorMerchant Action Type

Brand Item Category

Event Type

Log UserObject

Object
children Outcome Enrollment

Course

Fig. 6. Three different data science competitions held during the period of 2014-2015 — from left to right: KDD cup 2014, IJCAI, and KDD cup 2015. A total
of 906 teams took part in these competitions. Predictions from the Data Science Machine solution were submitted and the results are reported in this paper. We
note that two out of three competitions are ongoing at the time of writing.

TABLE II. THE AUC SCORES ACHIEVED BY THE DATA SCIENCE MACHINE. THE "DEFAULT" SCORE USES THE DEFAULT PARAMETERS. THE "LOCAL"
SCORE IS THE RESULT OF RUNNING K-FOLDS (K=3) CROSS VALIDATION, WHILE THE "ONLINE" SCORE IS BASED ON SUBMITTING PREDICTIONS TO THE

COMPETITION.

Parameter Selection KDD cup 2014 IJCAI KDD cup 2015
Local Online Local Online Local Online

Default .6059 .55481 .6439 .6313 .8444 .5000
GCP Optimized .6321 .5863 .6540 .6606 .8672 .8621

TABLE III. THE NUMBER OF ROWS AND THE NUMBER OF SYNTHESIZED FEATURES PER ENTITY IN EACH DATASET. THE UNCOMPRESSED SIZES OF THE
KDD CUP 2014, IJCAI, AND KDD CUP 2015 ARE APPROXIMATELY 3.1 GB, 1.9 GB, AND 1.0 GB, RESPECTIVELY.

KDD cup 2014 IJCAI KDD cup 2015
Entity # Rows # Features Entity # Rows # Features Entity # Rows # Features
Projects 664,098 935 Merchants 4995 43 Enrollments 2,000,904 450
Schools 57,004 430 Users 424,170 37 Users 112,448 202
Teachers 249,555 417 Behaviors 54,925,330 147 Courses 39 178
Donations 2,716,319 21 Categories 1,658 12 Outcomes 120,542 3
Donors 1,282,092 4 Items 1,090,390 60 Log 13,545,124 263
Resources 3,667,217 20 Brands 8,443 43 Objects 26,750 304
Vendors 357 13 ActionType 5 36 ObjectChildren 26,033 3
Outcomes 619,326 13 Outcomes 522,341 82 EventTypes 7 2
Essays 664,098 9

chosen features are good enough to perform better than most
competitors, but fall short of the top competitors, as the rate
of improvement does not plateau.

Autotuning effectiveness: The previous section discussed
whether or not the Data Science Machine creates features of
value. Another important job of the Data Science Machine
involves selecting which of those features to use and how to
tune the model to best use them. By using autotuning, the
Data Science Machine was able to increase its score across all
three datasets, locally and online (see Table II). Through this
process, the Data Science Machine is able to design a machine
learning pathway that can adapt itself to a range of problems
rather than depending on the default parameters.

The online submission of predictions for the KDD15 dataset
brought about an interesting insight into using autotuning
alongside default parameters. With the default parameters, the
local cross-validation score seemed to produce a good result.
However, when the predictions were uploaded to the compe-
tition website, the results were not as good as those found
locally. We suspected that there was something wrong with
the training setup, so to troubleshoot, we manually examined
450 features created by the Data Science Machine and tested
many initializations of machine learning pathway parameters.
Using an interface we developed, we were able to conclude
that the issue was with the default parameters rather than with
the training pathway itself.

The process we followed is similar to the process of a
practicing data scientist. First, we experimented with what
features to include in our system, and then we experimented

with parameters of the machine learning process.

This is noteworthy because the auto-tuning process em-
ployed by the Data Science Machine did not encounter the
issue described above, and the machine performed well relative
to competitors in KDD15 when it came to selecting features
and tuning parameters. This implies that the Data Science
Machine’s parameter tuning approach removed hours of de-
bugging from the work flow. Additionally, it highlights the
difficulty in picking default parameters for machine learning
algorithms. Without the auto-tuning process, the Data Science
Machine would not have achieved its goals.

Human value: The Data Science Machine performed well
against competitors who were not able to come to the insights
that put the "experts" above everyone else. We can see this
in Figure 8, where the Data Science Machine scores toward
the end of the plateau. At some point, moving up the leader
board might not be worth the cost required to do so. The large
human effort to move up the leader board is shown in Figure
9.

Implications for Data Scientists: The competitive success of
the Data Science Machine suggests it has a role alongside
data scientists. Currently, data scientists are very involved in
the feature generation and selection processes. Our results
show that the Data Science Machine can automatically create
features of value and figure out how to use those features
in creating a model. Although humans beat the Data Science
Machine for all datasets, the machine’s success-to-effort ratio
suggests there is a place for it in data science.

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

Fig. 8. AUC scores vs % participant achieving that score. The vertical line indicates where the Data Science Machine ranked, from top to bottom: KDD cup
2014, IJCAI, and KDD cup 2015

TABLE IV. HOW THE DATA SCIENCE MACHINE COMPARES TO HUMAN EFFORTS. WE DO NOT HAVE DATA ON NUMBER OF SUBMISSIONS FOR IJCAI.
KDD CUP 2015 WAS AN ONGOING COMPETITION AT THE TIME OF WRITING, SO THIS IS A SNAPSHOT FROM MAY 18TH, 2015.

Dataset # Teams % of Top Submission’s Score % of Teams Worse # Submissions worse # Days Spent on Worse Submissions
KDD cup 2014 473 86.5% 69.3% 3873 929
IJCAI 156 93.7% 32.7% - -
KDD cup 2015 277 95.7 85.6% 1319 377

First, the Data Science Machine can be used to set a
benchmark. Just as the IJCAI organizers published a benchmark
for competitors to use as reference, the Data Science Machine
could be a performance reference for practicing data scientists.
If the Data Science Machine performance is adequate for the
purposes of the problem, no further work is necessary. This
situation would save a lot of time if the dataset is similar to
KDD15 or IJCAI where most gains are achieved by the Data
Science Machine, and further human work has diminishing
marginal return. Even in the case of KDD14 where further
gains are significant, they appear to come at a high cost. Using
the Data Science Machine could significantly lessen the time
spent modeling predictive problems.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2
·104

Rank on leader board

C
um

ul
at

iv
e

su
bm

is
si

on
s

Fig. 9. The cumulative number of submissions made up to each leader board
rank in KDD cup 2014. We can see the total number of submissions made by
competitors increased exponentially as we move up the leader board.

Second, the Data Science Machine can engender creativity
in data science. The Data Science Machine works by exploring
a large space of potential features and models for a problem
in an attempt to find the best one. Data scientists often face
the problem of having more ideas to consider than available
resources to test them. Rather than iterating on which features
to create, the Data Science Machine could help with this
problem by enumerating potential features and letting data
scientists iterate on feature selection. In this way, a data
scientist can start with the Data Science Machine’s solution

and then apply their expert knowledge to refine it.

VIII. RELATED WORK

The key components of the Data Science Machine are
Automated feature engineering, Working with related data and
End-to-end system from data to predictions. Next we present
a list of related works that contain some of these components.

A. Automated feature engineering

Having recognized that feature engineering is the difference
between success and failure, generalized feature extraction
algorithms have been well studied for machine vision and
natural language processing.

In machine vision, an early concept was Scale-Invariant
Feature Transform (SIFT) [6]. These types of features can be
successfully generalized for many problems and applications
in machine vision, including object recognition and panorama
stitching [7]. Other features such as histograms of oriented
gradients [8] have performed well in other situations.

Similarly, in natural language processing, there are gener-
alized features generation techniques such as “term frequency-
inverse document frequency (tf-idf)", which is the ratio of
how frequently a word shows up in a document to how often
it shows up in the whole corpus of documents. This feature
type is easy to calculate and performs well [9]. Others include
modeling techniques like Latent Dirichlet Allocation (LDA),
which transforms a corpus of documents into document-topic
mappings [10]. LDA has proven to be general purpose enough
to be useful in many document classification tasks, including
spam filtering [11] and article recommendation [12].

Importantly, while we consider these generalized algo-
rithms to be useful, they still have to be tuned for best
performance. For example, in LDA, choosing the number of
topics in the corpus is a challenging enough to encourage
further research [10]. The importance of these algorithms is
that they are techniques to generically capture information
about type of data.

B. Working with related data

While the Data Science Machine focuses on data where we
simply know that a relation between entities exists, the field of
linked data strengthens these assumptions. In linked data [13],
the data is structured such that it can be accessed with semantic
queries. The field of automated feature generation for linked
data is an active area of research.

Cheng et al. [14] developed an automated feature gen-
eration algorithm for data organized in a domain-specific
knowledge base. This data is organized as entity-relationship-
entity triples. For example, the Yago [15] knowledge
base contains the following triple: (Natalie Portman,
hasActedIn, Black Swan). Using knowledge bases,
the authors create a graph based language for generating
features. In one example, they use natural language techniques
to extract entities in tweets and relate them to entities in
Yago. By relating tweets to entities, they can automatically
generate new features with semantic meaning. Using this
technique, they show some improvement in prediction results
with their automatic semantic features. However, they conclude
that further improvement will likely come from more domain-
specific knowledge bases and information retrieval techniques.

This work, and other related systems [16], are limited to
datasets that are structured in knowledge bases or can be mined
for entities that are in knowledge bases. Many datasets, like
the ones we present in this paper, do not fit these constraints,
yet still have related entities.

C. End-to-end system

The Automatic Statistician project automatically models
regression problems and produces reports readable by hu-
mans [17]. Their approach uses non-parametric Gaussian pro-
cesses to model regression functions. They demonstrate their
system performing well on 13 different time series datasets,
suggesting generalizability. Their system is noteworthy in sev-
eral regards. First, like the Data Science Machine, it focuses on
an input of relatively untransformed data. Second, its approach,
composing explanations one by one is similar to how a data
scientist might analyze a time series to generate the overall
model. Finally, they demonstrate generating a report to explain
the resulting model so that the system can be understood by
non-experts.

IX. CONCLUSION

We have presented the Data Science Machine: an end-to-
end system for doing data science with relational data. At its
core is Deep Feature Synthesis, an algorithm for automatically
synthesizing features for machine learning. We demonstrated
the expressiveness of the generated features on 3 datasets from
different domains. By implementing an autotuning process,
we optimize the whole pathway without human involvement,
enabling it to generalize to different datasets. Overall, the
system is competitive with human solutions for the datasets
we tested on. We view this success as an indicator that the
Data Science Machine has a role in the data science process.

A. Future work

We see the future direction of the Data Science Machine
as a tool to empower data scientists. To this end, there are

three important directions for future work. First, Deep Feature
Synthesis itself has its own set of parameters that affect the
resulting synthesized features. Future work could focus on se-
lecting these parameters to improve performance and enhance
the overall system’s abilities. Right now, the system’s approach
doesn’t involve much human interaction. In the future, the
Data Science Machine could expose ways for humans to guide
and interact with the system, enabling the pairing human and
machine intelligence. Finally, the Data Science Machine was
tested on 3 different datasets, but more datasets will help
generalize and make the Data Science Machine the better tool
for data science.

REFERENCES

[1] P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[2] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems, 2012, pp. 2951–2959.

[3] C. E. Rasmussen, “Gaussian processes for machine learning,” the MIT
Press, 2006.

[4] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” CoRR, vol.
abs/1012.2599, 2010.

[5] A. Wilson and Z. Ghahramani, “Copula processes,” in Advances in
Neural Information Processing Systems, 2010, pp. 2460–2468.

[6] D. Lowe, “Object recognition from local scale-invariant features,” in
The Proceedings of the Seventh IEEE International Conference on
Computer Vision, vol. 2, 1999, pp. 1150–1157.

[7] M. Brown and D. Lowe, “Recognising panoramas,” in Proceedings.
Ninth IEEE International Conference on Computer Vision, vol. 2, Oct
2003, pp. 1218–1225.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 1, 2005, pp. 886–893.

[9] A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive
Datasets. Cambridge University Press, 2011, pp. 1–17, cambridge
Books Online.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[11] I. Bíró, J. Szabó, and A. A. Benczúr, “Latent dirichlet allocation in web
spam filtering,” in Proceedings of the 4th International Workshop on
Adversarial Information Retrieval on the Web, ser. AIRWeb ’08. New
York, NY, USA: ACM, 2008, pp. 29–32.

[12] C. Wang and D. M. Blei, “Collaborative topic modeling for recom-
mending scientific articles,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2011, pp. 448–456.

[13] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,”
Journal on Semantic Web and Information Systems, 2009.

[14] W. Cheng, G. Kasneci, T. Graepel, D. Stern, and R. Herbrich, “Auto-
mated feature generation from structured knowledge,” in Proceedings of
the 20th ACM international conference on Information and knowledge
management, 2011, pp. 1395–1404.

[15] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web. ACM, 2007, pp. 697–706.

[16] H. Paulheim and J. Fümkranz, “Unsupervised generation of data mining
features from linked open data,” in Proceedings of the 2nd International
Conference on Web Intelligence, Mining and Semantics, ser. WIMS ’12.
New York, NY, USA: ACM, 2012, pp. 31:1–31:12.

[17] J. R. Lloyd, D. Duvenaud, R. Grosse, J. B. Tenenbaum, and Z. Ghahra-
mani, “Automatic construction and Natural-Language description of
nonparametric regression models,” in Association for the Advancement

of Artificial Intelligence (AAAI), 2014.

